|
| 1 | +x <- c(NA, 1:98, NA) |
| 2 | +y <- c(rep(c("A", "B"), each = 48), c(NA, NA, NA, NA)) |
| 3 | +xy <- data.frame(x = x, y = y) |
| 4 | + |
| 5 | +test_that("univariate_grid() can deal with missings", { |
| 6 | + expect_true( |
| 7 | + !anyNA(univariate_grid(x, grid_size = 3, strategy = "uniform", na.rm = TRUE)) |
| 8 | + ) |
| 9 | + expect_true( |
| 10 | + !anyNA(univariate_grid(x, grid_size = 3, strategy = "quantile", na.rm = TRUE)) |
| 11 | + ) |
| 12 | + expect_true( |
| 13 | + anyNA(univariate_grid(x, grid_size = 3, strategy = "uniform", na.rm = FALSE)) |
| 14 | + ) |
| 15 | + expect_true( |
| 16 | + anyNA(univariate_grid(x, grid_size = 3, strategy = "quantile", na.rm = FALSE)) |
| 17 | + ) |
| 18 | + expect_false( |
| 19 | + anyNA(univariate_grid(na.omit(x), grid_size = 3, strategy = "uniform", na.rm = FALSE)) |
| 20 | + ) |
| 21 | + expect_false( |
| 22 | + anyNA(univariate_grid(na.omit(x), grid_size = 3, strategy = "quantile", na.rm = FALSE)) |
| 23 | + ) |
| 24 | + |
| 25 | + expect_true(!anyNA(univariate_grid(y, na.rm = TRUE))) |
| 26 | + expect_true(anyNA(univariate_grid(y, na.rm = FALSE))) |
| 27 | + expect_false(anyNA(univariate_grid(na.omit(y), na.rm = FALSE))) |
| 28 | +}) |
| 29 | + |
| 30 | +test_that("multivariate_grid() can deal with missings", { |
| 31 | + expect_true( |
| 32 | + !anyNA(multivariate_grid(xy, grid_size = 6, strategy = "uniform", na.rm = TRUE)) |
| 33 | + ) |
| 34 | + expect_false( |
| 35 | + !anyNA(multivariate_grid(xy, grid_size = 6, strategy = "uniform", na.rm = FALSE)) |
| 36 | + ) |
| 37 | + expect_false( |
| 38 | + anyNA(multivariate_grid(na.omit(xy), grid_size = 6, strategy = "uniform", na.rm = FALSE)) |
| 39 | + ) |
| 40 | +}) |
| 41 | + |
| 42 | +# Univariate model |
| 43 | +X <- data.frame(x1 = 1:6, x2 = c(NA, 1, 2, 1, 1, 3), x3 = factor(c("A", NA, NA, "B", "A", "A"))) |
| 44 | +y <- 1:6 |
| 45 | +pf <- function(fit, x) x$x1 |
| 46 | +fit <- "a model" |
| 47 | + |
| 48 | +test_that("average_loss() works without BY", { |
| 49 | + expect_equal(drop(average_loss(fit, X = X, y = y, pred_fun = pf)$M), 0) |
| 50 | +}) |
| 51 | + |
| 52 | +test_that("average_loss() works with BY", { |
| 53 | + expect_warning( |
| 54 | + expect_warning(r <- average_loss(fit, X = X, y = y, pred_fun = pf, BY = "x3")) |
| 55 | + ) |
| 56 | + expect_equal(unname(drop(r$M)), c(0, 0, 0)) |
| 57 | + expect_s3_class(plot(r), "ggplot") |
| 58 | +}) |
| 59 | + |
| 60 | +test_that("perm_importance() works", { |
| 61 | + set.seed(1L) |
| 62 | + expect_no_error(r <- perm_importance(fit, X = X, y = y, pred_fun = pf)) |
| 63 | + expect_true(r$M[1L] > 0 && all(r$M[2:3] == 0)) |
| 64 | +}) |
| 65 | + |
| 66 | +test_that("ice() works when non-v variable contains missing", { |
| 67 | + set.seed(1L) |
| 68 | + expect_no_error(r <- ice(fit, v = "x1", X = X, pred_fun = pf)) |
| 69 | + expect_equal(r$data$x1, r$data$y) |
| 70 | +}) |
| 71 | + |
| 72 | +test_that("ice() works when v contains missing", { |
| 73 | + expect_no_error(r1 <- ice(fit, v = "x2", X = X, pred_fun = pf)) |
| 74 | + expect_true(!anyNA(r1$data$x2)) |
| 75 | + |
| 76 | + expect_no_error(r2 <- ice(fit, v = "x2", X = X, pred_fun = pf, na.rm = FALSE)) |
| 77 | + expect_true(anyNA(r2$data$x2)) |
| 78 | + |
| 79 | + expect_equal(r1$data[1:3, ], r2$data[1:3, ]) |
| 80 | + expect_s3_class(plot(r2, alpha = 1), "ggplot") |
| 81 | +}) |
| 82 | + |
| 83 | +test_that("ice() works when v contains missing (multivariate)", { |
| 84 | + v <- c("x2", "x3") |
| 85 | + |
| 86 | + expect_no_error(r1 <- ice(fit, v = v, X = X, pred_fun = pf)) |
| 87 | + expect_true(!anyNA(r1$data$x2)) |
| 88 | + |
| 89 | + expect_no_error(r2 <- ice(fit, v = v, X = X, pred_fun = pf, na.rm = FALSE)) |
| 90 | + expect_true(anyNA(r2$data$x2)) |
| 91 | +}) |
| 92 | + |
| 93 | +test_that("ice() works with missing value in BY", { |
| 94 | + expect_true(anyNA(ice(fit, v = "x1", X = X, pred_fun = pf, BY = "x3")$data$x3)) |
| 95 | + r <- ice(fit, v = "x2", X = X, pred_fun = pf, BY = "x3") |
| 96 | + expect_true(anyNA(r$data$x3)) |
| 97 | + expect_s3_class(plot(r), "ggplot") |
| 98 | +}) |
| 99 | + |
| 100 | +test_that("partial_dep() works when non-v variable contains missing", { |
| 101 | + expect_no_error(r <- partial_dep(fit, v = "x1", X = X, pred_fun = pf)) |
| 102 | + expect_equal(r$data$x1, r$data$y) |
| 103 | +}) |
| 104 | + |
| 105 | +test_that("partial_dep() works when v contains missing", { |
| 106 | + expect_no_error(r1 <- partial_dep(fit, v = "x2", X = X, pred_fun = pf, grid_size = 2)) |
| 107 | + expect_true(!anyNA(r1$data$x2)) |
| 108 | + |
| 109 | + expect_no_error( |
| 110 | + r2 <- partial_dep(fit, v = "x2", X = X, pred_fun = pf, na.rm = FALSE, grid_size = 2) |
| 111 | + ) |
| 112 | + expect_true(anyNA(r2$data$x2)) |
| 113 | + expect_equal(r1$data, r2$data[1:2, ]) |
| 114 | + expect_s3_class(plot(r2), "ggplot") |
| 115 | +}) |
| 116 | + |
| 117 | +test_that("partial_dep() works when v contains missing (multi)", { |
| 118 | + v <- c("x2", "x3") |
| 119 | + expect_no_error(r1 <- partial_dep(fit, v = v, X = X, pred_fun = pf)) |
| 120 | + expect_true(!anyNA(r1$data$x2)) |
| 121 | + |
| 122 | + expect_no_error( |
| 123 | + r2 <- partial_dep(fit, v = v, X = X, pred_fun = pf, na.rm = FALSE) |
| 124 | + ) |
| 125 | + expect_true(anyNA(r2$data$x2)) |
| 126 | + expect_s3_class(plot(r2), "ggplot") |
| 127 | +}) |
| 128 | + |
| 129 | +test_that("partial_dep() works when BY variable contains missing", { |
| 130 | + expect_no_error( |
| 131 | + r <- partial_dep(fit, v = "x2", X = X, pred_fun = pf, BY = "x3", na.rm = FALSE) |
| 132 | + ) |
| 133 | + expect_true(anyNA(r$data$x3)) |
| 134 | + expect_s3_class(plot(r), "ggplot") |
| 135 | +}) |
| 136 | + |
| 137 | +pfi <- function(fit, x) ifelse(is.na(x$x1 * x$x2), 1, x$x1 * x$x2) |
| 138 | + |
| 139 | +test_that("hstats() does not give an error with missing", { |
| 140 | + expect_warning( |
| 141 | + expect_warning( |
| 142 | + expect_warning( |
| 143 | + expect_no_error( |
| 144 | + r <- hstats(fit, X = X, pred_fun = pfi, verbose = FALSE) |
| 145 | + ) |
| 146 | + ) |
| 147 | + ) |
| 148 | + ) |
| 149 | + expect_true(drop(r$h2$num) > 0) |
| 150 | + expect_equal(rownames(h2_pairwise(r, zero = FALSE)), "x1:x2") |
| 151 | +}) |
| 152 | + |
| 153 | +# Some checks on pd_raw() |
| 154 | + |
| 155 | +test_that(".compress_grid() works with missing values in grid", { |
| 156 | + g <- c(2, 2, NA, 1, NA) |
| 157 | + gg <- .compress_grid(g) |
| 158 | + expect_equal(gg$grid[gg$reindex], g) |
| 159 | + |
| 160 | + g <- cbind(c(2, 2, NA, 1, NA), c(NA, NA, 3, 4, 4)) |
| 161 | + gg <- .compress_grid(g) |
| 162 | + expect_equal(gg$grid[gg$reindex, , drop = FALSE], g) |
| 163 | + |
| 164 | + g <- data.frame(g) |
| 165 | + gg <- .compress_grid(g) |
| 166 | + res <- gg$grid[gg$reindex, , drop = FALSE] |
| 167 | + rownames(res) <- 1:5 |
| 168 | + expect_equal(res, g) |
| 169 | +}) |
| 170 | + |
| 171 | +test_that(".compress_X() works with missing values", { |
| 172 | + # Note that b is not used after compression |
| 173 | + |
| 174 | + # data.frame |
| 175 | + X <- data.frame(a = c(NA, NA, NA, 1, 1), b = 1:5) |
| 176 | + out_df <- data.frame(a = c(NA, 1), b = c(1, 4), row.names = c(1L, 4L)) |
| 177 | + expect_warning(out <- .compress_X(X, v = "b")) |
| 178 | + expect_equal(out$X, out_df) |
| 179 | + expect_equal(out$w, c(3, 2)) |
| 180 | + |
| 181 | + # Matrix |
| 182 | + X <- cbind(a = c(NA, NA, NA, 1, 1), b = 1:5) |
| 183 | + out_m <- cbind(a = c(NA, 1), b = c(1, 4)) |
| 184 | + expect_warning(out <- .compress_X(X, v = "b")) |
| 185 | + expect_equal(out$X, out_m) |
| 186 | + expect_equal(out$w, c(3, 2)) |
| 187 | +}) |
| 188 | + |
| 189 | +test_that("pd_raw() works with missings (all compressions on)", { |
| 190 | + X <- cbind(a = c(NA, NA, NA, 1, 1), b = 1:5) |
| 191 | + out <- pd_raw(1, v = "a", X = X, pred_fun = function(m, x) x[, "b"], grid = c(NA, 1)) |
| 192 | + expect_equal(drop(out), rep(mean(X[, "b"]), times = 2L)) |
| 193 | + |
| 194 | + expect_warning( |
| 195 | + out <- pd_raw(1, v = "b", X = X, pred_fun = function(m, x) x[, "b"], grid = 1:5) |
| 196 | + ) |
| 197 | + expect_equal(drop(out), 1:5) |
| 198 | +}) |
| 199 | + |
| 200 | +# Other utils |
| 201 | + |
| 202 | +test_that("qcut() works with missings", { |
| 203 | + expect_true(is.na(hstats:::qcut(c(NA, 1:9), m = 2)[1L])) |
| 204 | +}) |
0 commit comments