-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
940 changed files
with
151,143 additions
and
1 deletion.
There are no files selected for viewing
Submodule sd-webui-controlnet
deleted from
416c34
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
21 changes: 21 additions & 0 deletions
21
extensions/sd-webui-controlnet/annotator/anime_face_segment/LICENSE
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2021 Miaomiao Li | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
172 changes: 172 additions & 0 deletions
172
extensions/sd-webui-controlnet/annotator/anime_face_segment/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
import os | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from PIL import Image | ||
import fnmatch | ||
import cv2 | ||
|
||
import sys | ||
|
||
import numpy as np | ||
from modules import devices | ||
from einops import rearrange | ||
from annotator.annotator_path import models_path | ||
|
||
import torchvision | ||
from torchvision.models import MobileNet_V2_Weights | ||
from torchvision import transforms | ||
|
||
COLOR_BACKGROUND = (255,255,0) | ||
COLOR_HAIR = (0,0,255) | ||
COLOR_EYE = (255,0,0) | ||
COLOR_MOUTH = (255,255,255) | ||
COLOR_FACE = (0,255,0) | ||
COLOR_SKIN = (0,255,255) | ||
COLOR_CLOTHES = (255,0,255) | ||
PALETTE = [COLOR_BACKGROUND,COLOR_HAIR,COLOR_EYE,COLOR_MOUTH,COLOR_FACE,COLOR_SKIN,COLOR_CLOTHES] | ||
|
||
class UNet(nn.Module): | ||
def __init__(self): | ||
super(UNet, self).__init__() | ||
self.NUM_SEG_CLASSES = 7 # Background, hair, face, eye, mouth, skin, clothes | ||
|
||
mobilenet_v2 = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.IMAGENET1K_V1) | ||
mob_blocks = mobilenet_v2.features | ||
|
||
# Encoder | ||
self.en_block0 = nn.Sequential( # in_ch=3 out_ch=16 | ||
mob_blocks[0], | ||
mob_blocks[1] | ||
) | ||
self.en_block1 = nn.Sequential( # in_ch=16 out_ch=24 | ||
mob_blocks[2], | ||
mob_blocks[3], | ||
) | ||
self.en_block2 = nn.Sequential( # in_ch=24 out_ch=32 | ||
mob_blocks[4], | ||
mob_blocks[5], | ||
mob_blocks[6], | ||
) | ||
self.en_block3 = nn.Sequential( # in_ch=32 out_ch=96 | ||
mob_blocks[7], | ||
mob_blocks[8], | ||
mob_blocks[9], | ||
mob_blocks[10], | ||
mob_blocks[11], | ||
mob_blocks[12], | ||
mob_blocks[13], | ||
) | ||
self.en_block4 = nn.Sequential( # in_ch=96 out_ch=160 | ||
mob_blocks[14], | ||
mob_blocks[15], | ||
mob_blocks[16], | ||
) | ||
|
||
# Decoder | ||
self.de_block4 = nn.Sequential( # in_ch=160 out_ch=96 | ||
nn.UpsamplingNearest2d(scale_factor=2), | ||
nn.Conv2d(160, 96, kernel_size=3, padding=1), | ||
nn.InstanceNorm2d(96), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(p=0.2) | ||
) | ||
self.de_block3 = nn.Sequential( # in_ch=96x2 out_ch=32 | ||
nn.UpsamplingNearest2d(scale_factor=2), | ||
nn.Conv2d(96*2, 32, kernel_size=3, padding=1), | ||
nn.InstanceNorm2d(32), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(p=0.2) | ||
) | ||
self.de_block2 = nn.Sequential( # in_ch=32x2 out_ch=24 | ||
nn.UpsamplingNearest2d(scale_factor=2), | ||
nn.Conv2d(32*2, 24, kernel_size=3, padding=1), | ||
nn.InstanceNorm2d(24), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(p=0.2) | ||
) | ||
self.de_block1 = nn.Sequential( # in_ch=24x2 out_ch=16 | ||
nn.UpsamplingNearest2d(scale_factor=2), | ||
nn.Conv2d(24*2, 16, kernel_size=3, padding=1), | ||
nn.InstanceNorm2d(16), | ||
nn.LeakyReLU(0.1), | ||
nn.Dropout(p=0.2) | ||
) | ||
|
||
self.de_block0 = nn.Sequential( # in_ch=16x2 out_ch=7 | ||
nn.UpsamplingNearest2d(scale_factor=2), | ||
nn.Conv2d(16*2, self.NUM_SEG_CLASSES, kernel_size=3, padding=1), | ||
nn.Softmax2d() | ||
) | ||
|
||
def forward(self, x): | ||
e0 = self.en_block0(x) | ||
e1 = self.en_block1(e0) | ||
e2 = self.en_block2(e1) | ||
e3 = self.en_block3(e2) | ||
e4 = self.en_block4(e3) | ||
|
||
d4 = self.de_block4(e4) | ||
d4 = F.interpolate(d4, size=e3.size()[2:], mode='bilinear', align_corners=True) | ||
c4 = torch.cat((d4,e3),1) | ||
|
||
d3 = self.de_block3(c4) | ||
d3 = F.interpolate(d3, size=e2.size()[2:], mode='bilinear', align_corners=True) | ||
c3 = torch.cat((d3,e2),1) | ||
|
||
d2 = self.de_block2(c3) | ||
d2 = F.interpolate(d2, size=e1.size()[2:], mode='bilinear', align_corners=True) | ||
c2 =torch.cat((d2,e1),1) | ||
|
||
d1 = self.de_block1(c2) | ||
d1 = F.interpolate(d1, size=e0.size()[2:], mode='bilinear', align_corners=True) | ||
c1 = torch.cat((d1,e0),1) | ||
y = self.de_block0(c1) | ||
|
||
return y | ||
|
||
|
||
class AnimeFaceSegment: | ||
|
||
model_dir = os.path.join(models_path, "anime_face_segment") | ||
|
||
def __init__(self): | ||
self.model = None | ||
self.device = devices.get_device_for("controlnet") | ||
|
||
def load_model(self): | ||
remote_model_path = "https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/Annotators/UNet.pth" | ||
modelpath = os.path.join(self.model_dir, "UNet.pth") | ||
if not os.path.exists(modelpath): | ||
from basicsr.utils.download_util import load_file_from_url | ||
load_file_from_url(remote_model_path, model_dir=self.model_dir) | ||
net = UNet() | ||
ckpt = torch.load(modelpath, map_location=self.device) | ||
for key in list(ckpt.keys()): | ||
if 'module.' in key: | ||
ckpt[key.replace('module.', '')] = ckpt[key] | ||
del ckpt[key] | ||
net.load_state_dict(ckpt) | ||
net.eval() | ||
self.model = net.to(self.device) | ||
|
||
def unload_model(self): | ||
if self.model is not None: | ||
self.model.cpu() | ||
|
||
def __call__(self, input_image): | ||
|
||
if self.model is None: | ||
self.load_model() | ||
self.model.to(self.device) | ||
transform = transforms.Compose([ | ||
transforms.Resize(512,interpolation=transforms.InterpolationMode.BICUBIC), | ||
transforms.ToTensor(),]) | ||
img = Image.fromarray(input_image) | ||
with torch.no_grad(): | ||
img = transform(img).unsqueeze(dim=0).to(self.device) | ||
seg = self.model(img).squeeze(dim=0) | ||
seg = seg.cpu().detach().numpy() | ||
img = rearrange(seg,'h w c -> w c h') | ||
img = [[PALETTE[np.argmax(val)] for val in buf]for buf in img] | ||
return np.array(img).astype(np.uint8) |
22 changes: 22 additions & 0 deletions
22
extensions/sd-webui-controlnet/annotator/annotator_path.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
import os | ||
from modules import shared | ||
|
||
models_path = shared.opts.data.get('control_net_modules_path', None) | ||
if not models_path: | ||
models_path = getattr(shared.cmd_opts, 'controlnet_annotator_models_path', None) | ||
if not models_path: | ||
models_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'downloads') | ||
|
||
if not os.path.isabs(models_path): | ||
models_path = os.path.join(shared.data_path, models_path) | ||
|
||
clip_vision_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision') | ||
# clip vision is always inside controlnet "extensions\sd-webui-controlnet" | ||
# and any problem can be solved by removing controlnet and reinstall | ||
|
||
models_path = os.path.realpath(models_path) | ||
os.makedirs(models_path, exist_ok=True) | ||
print(f'ControlNet preprocessor location: {models_path}') | ||
# Make sure that the default location is inside controlnet "extensions\sd-webui-controlnet" | ||
# so that any problem can be solved by removing controlnet and reinstall | ||
# if users do not change configs on their own (otherwise users will know what is wrong) |
14 changes: 14 additions & 0 deletions
14
extensions/sd-webui-controlnet/annotator/binary/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import cv2 | ||
|
||
|
||
def apply_binary(img, bin_threshold): | ||
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | ||
|
||
if bin_threshold == 0 or bin_threshold == 255: | ||
# Otsu's threshold | ||
otsu_threshold, img_bin = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | ||
print("Otsu threshold:", otsu_threshold) | ||
else: | ||
_, img_bin = cv2.threshold(img_gray, bin_threshold, 255, cv2.THRESH_BINARY_INV) | ||
|
||
return cv2.cvtColor(img_bin, cv2.COLOR_GRAY2RGB) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
import cv2 | ||
|
||
|
||
def apply_canny(img, low_threshold, high_threshold): | ||
return cv2.Canny(img, low_threshold, high_threshold) |
133 changes: 133 additions & 0 deletions
133
extensions/sd-webui-controlnet/annotator/clipvision/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import os | ||
import cv2 | ||
import torch | ||
|
||
from modules import devices | ||
from modules.modelloader import load_file_from_url | ||
from annotator.annotator_path import models_path | ||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor | ||
|
||
|
||
config_clip_g = { | ||
"attention_dropout": 0.0, | ||
"dropout": 0.0, | ||
"hidden_act": "gelu", | ||
"hidden_size": 1664, | ||
"image_size": 224, | ||
"initializer_factor": 1.0, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 8192, | ||
"layer_norm_eps": 1e-05, | ||
"model_type": "clip_vision_model", | ||
"num_attention_heads": 16, | ||
"num_channels": 3, | ||
"num_hidden_layers": 48, | ||
"patch_size": 14, | ||
"projection_dim": 1280, | ||
"torch_dtype": "float32" | ||
} | ||
|
||
config_clip_h = { | ||
"attention_dropout": 0.0, | ||
"dropout": 0.0, | ||
"hidden_act": "gelu", | ||
"hidden_size": 1280, | ||
"image_size": 224, | ||
"initializer_factor": 1.0, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 5120, | ||
"layer_norm_eps": 1e-05, | ||
"model_type": "clip_vision_model", | ||
"num_attention_heads": 16, | ||
"num_channels": 3, | ||
"num_hidden_layers": 32, | ||
"patch_size": 14, | ||
"projection_dim": 1024, | ||
"torch_dtype": "float32" | ||
} | ||
|
||
config_clip_vitl = { | ||
"attention_dropout": 0.0, | ||
"dropout": 0.0, | ||
"hidden_act": "quick_gelu", | ||
"hidden_size": 1024, | ||
"image_size": 224, | ||
"initializer_factor": 1.0, | ||
"initializer_range": 0.02, | ||
"intermediate_size": 4096, | ||
"layer_norm_eps": 1e-05, | ||
"model_type": "clip_vision_model", | ||
"num_attention_heads": 16, | ||
"num_channels": 3, | ||
"num_hidden_layers": 24, | ||
"patch_size": 14, | ||
"projection_dim": 768, | ||
"torch_dtype": "float32" | ||
} | ||
|
||
configs = { | ||
'clip_g': config_clip_g, | ||
'clip_h': config_clip_h, | ||
'clip_vitl': config_clip_vitl, | ||
} | ||
|
||
downloads = { | ||
'clip_vitl': 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin', | ||
'clip_g': 'https://huggingface.co/lllyasviel/Annotators/resolve/main/clip_g.pth', | ||
'clip_h': 'https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/pytorch_model.bin' | ||
} | ||
|
||
|
||
clip_vision_h_uc = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision_h_uc.data') | ||
clip_vision_h_uc = torch.load(clip_vision_h_uc, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))['uc'] | ||
|
||
clip_vision_vith_uc = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision_vith_uc.data') | ||
clip_vision_vith_uc = torch.load(clip_vision_vith_uc, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))['uc'] | ||
|
||
|
||
class ClipVisionDetector: | ||
def __init__(self, config, low_vram: bool): | ||
assert config in downloads | ||
self.download_link = downloads[config] | ||
self.model_path = os.path.join(models_path, 'clip_vision') | ||
self.file_name = config + '.pth' | ||
self.config = configs[config] | ||
self.device = ( | ||
torch.device("cpu") if low_vram else | ||
devices.get_device_for("controlnet") | ||
) | ||
os.makedirs(self.model_path, exist_ok=True) | ||
file_path = os.path.join(self.model_path, self.file_name) | ||
if not os.path.exists(file_path): | ||
load_file_from_url(url=self.download_link, model_dir=self.model_path, file_name=self.file_name) | ||
config = CLIPVisionConfig(**self.config) | ||
|
||
self.model = CLIPVisionModelWithProjection(config) | ||
self.processor = CLIPImageProcessor(crop_size=224, | ||
do_center_crop=True, | ||
do_convert_rgb=True, | ||
do_normalize=True, | ||
do_resize=True, | ||
image_mean=[0.48145466, 0.4578275, 0.40821073], | ||
image_std=[0.26862954, 0.26130258, 0.27577711], | ||
resample=3, | ||
size=224) | ||
sd = torch.load(file_path, map_location=self.device) | ||
self.model.load_state_dict(sd, strict=False) | ||
del sd | ||
self.model.to(self.device) | ||
self.model.eval() | ||
|
||
def unload_model(self): | ||
if self.model is not None: | ||
self.model.to('meta') | ||
|
||
def __call__(self, input_image): | ||
with torch.no_grad(): | ||
input_image = cv2.resize(input_image, (224, 224), interpolation=cv2.INTER_AREA) | ||
feat = self.processor(images=input_image, return_tensors="pt") | ||
feat['pixel_values'] = feat['pixel_values'].to(self.device) | ||
result = self.model(**feat, output_hidden_states=True) | ||
result['hidden_states'] = [v.to(self.device) for v in result['hidden_states']] | ||
result = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in result.items()} | ||
return result |
Binary file added
BIN
+643 KB
extensions/sd-webui-controlnet/annotator/clipvision/clip_vision_h_uc.data
Binary file not shown.
Binary file added
BIN
+64.8 KB
extensions/sd-webui-controlnet/annotator/clipvision/clip_vision_vith_uc.data
Binary file not shown.
20 changes: 20 additions & 0 deletions
20
extensions/sd-webui-controlnet/annotator/color/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import cv2 | ||
|
||
def cv2_resize_shortest_edge(image, size): | ||
h, w = image.shape[:2] | ||
if h < w: | ||
new_h = size | ||
new_w = int(round(w / h * size)) | ||
else: | ||
new_w = size | ||
new_h = int(round(h / w * size)) | ||
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) | ||
return resized_image | ||
|
||
def apply_color(img, res=512): | ||
img = cv2_resize_shortest_edge(img, res) | ||
h, w = img.shape[:2] | ||
|
||
input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC) | ||
input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST) | ||
return input_img_color |
Oops, something went wrong.