Part of the AWS ML Certification
Fine-tuned(Transfer Learning) a large language model (LLM) on SageMaker. Utilized LoRa for efficient parameter reduction and transfer learning for fast inference with CloudFront. Leveraged a pre-trained model (databricks/dolly-v2-3b) from Hugging Face for optimal performance and resource conservation.
The following table lists the required libraries and their versions that you need to install to run this project:
Package | Version |
---|---|
accelerate | >=0.20.3, <1 |
bitsandbytes | ==0.39.0 |
click | >=8.0.4, <9 |
datasets | >=2.10.0, <3 |
deepspeed | >=0.8.3, <0.9 |
faiss-cpu | ==1.7.4 |
ipykernel | ==6.22.0 |
langchain | ==0.0.161 |
torch | >=1.13.1, <2 |
transformers | ==4.28.1 |
peft | ==0.3.0 |
pytest | ==7.3.2 |
numpy | >=1.25.2 |
You can install these packages using pip
with the following command:
pip install accelerate>=0.20.3,<1 \
bitsandbytes==0.39.0 \
click>=8.0.4,<9 \
datasets>=2.10.0,<3 \
deepspeed>=0.8.3,<0.9 \
faiss-cpu==1.7.4 \
ipykernel==6.22.0 \
langchain==0.0.161 \
torch>=1.13.1,<2 \
transformers==4.28.1 \
peft==0.3.0 \
pytest==7.3.2 \
numpy>=1.25.2