Skip to content

Commit

Permalink
Merge pull request #12 from Koldim2001/feature/batch_processing
Browse files Browse the repository at this point in the history
Feature/batch processing
  • Loading branch information
Koldim2001 authored Jul 1, 2024
2 parents b7d0ffd + 4220629 commit b8d4a88
Show file tree
Hide file tree
Showing 6 changed files with 99 additions and 8 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,4 +19,5 @@ setup.cfg
build
info_how_pip_upload.txt
examples/patched_yolo_infer
**.engine
**.ipynb
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ Class implementing cropping and passing crops through a neural network for detec
| resize_initial_size | bool | False | Whether to resize the results to the original input image size (ps: slow operation). |
| memory_optimize | bool | True | Memory optimization option for segmentation (less accurate results when enabled). |
| inference_extra_args | dict | None | Dictionary with extra ultralytics [inference parameters](https://docs.ultralytics.com/modes/predict/#inference-arguments) (possible keys: half, device, max_det, augment, agnostic_nms and retina_masks) |
| batch_inference | bool | False | Batch inference of image crops through a neural network instead of sequential passes of crops (ps: faster inference, higher gpu memory use). |


**CombineDetections**
Expand Down
3 changes: 2 additions & 1 deletion patched_yolo_infer/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ This library facilitates various visualizations of inference results from ultral
You can install the library via pip:

```bash
pip install patched_yolo_infer
pip install patched-yolo-infer
```

Note: If CUDA support is available, it's recommended to pre-install PyTorch with CUDA support before installing the library. Otherwise, the CPU version will be installed by default.
Expand Down Expand Up @@ -99,6 +99,7 @@ Class implementing cropping and passing crops through a neural network for detec
- **resize_initial_size** (*bool*): Whether to resize the results to the original image size (ps: slow operation).
- **memory_optimize** (*bool*): Memory optimization option for segmentation (less accurate results when enabled).
- **inference_extra_args** (*dict*): Dictionary with extra ultralytics [inference parameters](https://docs.ultralytics.com/modes/predict/#inference-arguments) (possible keys: half, device, max_det, augment, agnostic_nms and retina_masks)
- **batch_inference** (*bool*): Batch inference of image crops through a neural network instead of sequential passes of crops (ps: faster inference, higher gpu memory use)

**CombineDetections**
Class implementing combining masks/boxes from multiple crops + NMS (Non-Maximum Suppression).\
Expand Down
90 changes: 88 additions & 2 deletions patched_yolo_infer/nodes/MakeCropsDetectThem.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,8 @@ class MakeCropsDetectThem:
image size (ps: slow operation).
class_names_dict (dict): Dictionary containing class names of the YOLO model.
memory_optimize (bool): Memory optimization option for segmentation (less accurate results)
batch_inference (bool): Batch inference of image crops through a neural network instead of
sequential passes of crops (ps: Faster inference, higher memory use)
inference_extra_args (dict): Dictionary with extra ultralytics inference parameters
"""
def __init__(
Expand All @@ -70,6 +72,7 @@ def __init__(
model=None,
memory_optimize=True,
inference_extra_args=None,
batch_inference=False,
) -> None:
if model is None:
self.model = YOLO(model_path) # Load the model from the specified path
Expand All @@ -91,6 +94,7 @@ def __init__(
self.memory_optimize = memory_optimize # memory opimization option for segmentation
self.class_names_dict = self.model.names # dict with human-readable class names
self.inference_extra_args = inference_extra_args # dict with extra ultralytics inference parameters
self.batch_inference = batch_inference # batch inference of image crops through a neural network

self.crops = self.get_crops_xy(
self.image,
Expand All @@ -100,7 +104,10 @@ def __init__(
overlap_y=self.overlap_y,
show=self.show_crops,
)
self._detect_objects()
if self.batch_inference:
self._detect_objects_batch()
else:
self._detect_objects()

def get_crops_xy(
self,
Expand Down Expand Up @@ -141,6 +148,7 @@ def get_crops_xy(
x_new = round((x_steps-1) * (shape_x * cross_koef_x) + shape_x)
image_innitial = image_full.copy()
image_full = cv2.resize(image_full, (x_new, y_new))
batch_of_crops = []

if show:
plt.figure(figsize=[x_steps*0.9, y_steps*0.9])
Expand Down Expand Up @@ -176,12 +184,17 @@ def get_crops_xy(
x_start=x_start,
y_start=y_start,
))
if self.batch_inference:
batch_of_crops.append(im_temp)

if show:
plt.show()
print('Number of generated images:', count)

return data_all_crops
if self.batch_inference:
return data_all_crops, batch_of_crops
else:
return data_all_crops

def _detect_objects(self):
"""
Expand All @@ -207,3 +220,76 @@ def _detect_objects(self):
crop.calculate_real_values()
if self.resize_initial_size:
crop.resize_results()

def _detect_objects_batch(self):
"""
Method to detect objects in batch of image crops.
This method performs batch inference using the YOLO model,
calculates real values, and optionally resizes the results.
Returns:
None
"""
crops, batch = self.crops
self.crops = crops
self._calculate_batch_inference(
batch,
self.crops,
self.model,
imgsz=self.imgsz,
conf=self.conf,
iou=self.iou,
segment=self.segment,
classes_list=self.classes_list,
memory_optimize=self.memory_optimize,
extra_args=self.inference_extra_args
)
for crop in self.crops:
crop.calculate_real_values()
if self.resize_initial_size:
crop.resize_results()

def _calculate_batch_inference(
self,
batch,
crops,
model,
imgsz=640,
conf=0.35,
iou=0.7,
segment=False,
classes_list=None,
memory_optimize=False,
extra_args=None,
):
# Perform batch inference of image crops through a neural network
extra_args = {} if extra_args is None else extra_args
predictions = model.predict(
batch,
imgsz=imgsz,
conf=conf,
iou=iou,
classes=classes_list,
verbose=False,
**extra_args
)

for pred, crop in zip(predictions, crops):

# Get the bounding boxes and convert them to a list of lists
crop.detected_xyxy = pred.boxes.xyxy.cpu().int().tolist()

# Get the classes and convert them to a list
crop.detected_cls = pred.boxes.cls.cpu().int().tolist()

# Get the mask confidence scores
crop.detected_conf = pred.boxes.conf.cpu().numpy()

if segment and len(crop.detected_cls) != 0:
if memory_optimize:
# Get the polygons
crop.polygons = [mask.astype(np.uint16) for mask in pred.masks.xy]
else:
# Get the masks
crop.detected_masks = pred.masks.data.cpu().numpy()
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
numpy<2.0
torch
numpy
opencv-python
matplotlib
ultralytics
10 changes: 6 additions & 4 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@
long_description = "\n" + fh.read()


VERSION = '1.2.6'
DESCRIPTION = '''YOLO-Patch-Based-Inference for detection/segmentation of small objects in images.'''
VERSION = '1.2.7'
DESCRIPTION = '''Patch-Based-Inference for detection/segmentation of small objects in images.'''

setup(
name="patched_yolo_infer",
Expand All @@ -23,7 +23,7 @@
packages=find_packages(),
python_requires=">=3.8",
install_requires=[
'numpy',
'numpy<2.0',
'opencv-python',
'matplotlib',
'torch',
Expand All @@ -33,8 +33,10 @@
"python",
"yolov8",
"yolov9",
"yolov10",
"rtdetr",
"sam",
"fastsam",
"sahi",
"object detection",
"instance segmentation",
"patch-based inference",
Expand Down

0 comments on commit b8d4a88

Please sign in to comment.