-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
52 lines (37 loc) · 1.58 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures",
out.width = "100%"
)
```
# Localized Marker Detector
<!-- badges: start -->
<!-- badges: end -->
Localized Marker Detector (LMD) is a computational framework designed for the identification of gene expression markers localized to specific cell populations within single-cell RNA sequencing data. The major workflow of LMD comprises the following three main steps:
* Step1. Constructing a cell-cell affinity graph
* Step2. Diffusing the gene expression value across the cell graph
* Step3. Assigning a score to each gene based on the dynamics of its diffusion process
* Optional Downstream tasks
* Identifying gene modules and characterizing functional cell groups
* Cross-sample comparison
```{r pressure, echo=FALSE, out.width="100%", out.height="auto"}
knitr::include_graphics("./man/figures/LMD_workflow.png")
```
## Installation
LMD can be installed in R as follows:
``` r
install.packages("devtools")
devtools::install_github("KlugerLab/LocalizedMarkerDetector")
library("LocalizedMarkerDetector")
```
## Example tutorial
Please check [LMD tutorial](https://KlugerLab.github.io/LocalizedMarkerDetector/articles/).
## References
References of LMD functions can be found [here](https://KlugerLab.github.io/LocalizedMarkerDetector/reference/index.html).
<!-- Data used in this tutorial can be downloaded from [Tabula Muris](https://figshare.com/ndownloader/files/13092380). -->