Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error in STGmarkerFinder() function #8

Open
LeoCao-X opened this issue Dec 21, 2021 · 0 comments
Open

error in STGmarkerFinder() function #8

LeoCao-X opened this issue Dec 21, 2021 · 0 comments

Comments

@LeoCao-X
Copy link

LeoCao-X commented Dec 21, 2021

Dear author, thanks for your development of such great methods to do differential abundance analysis.
I try to use this method for my data, but I couldn't run STGmarkerFinder() function properly.
My code is

STG_markers.sex <- STGmarkerFinder(
  X = as.matrix(seurat.object@assays$RNA@data),
  da.regions = da_regions,
  lambda = 1.5, n.runs = 5, return.model = T,
  python.use = python2use, GPU=''
)

But I get the error message

2021-12-17 08:11:14.670028: W tensorflow/core/framework/op_kernel.cc:1692] OP_REQUIRES failed at cwise_ops_common.h:128 : Resource exhausted: OOM when allocating tensor with shape[24364,2000] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
Error in py_call_impl(callable, dots$args, dots$keywords) :
ResourceExhaustedError: OOM when allocating tensor with shape[24364,2000] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
[[node gates/clip_by_value (defined at :221) ]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
Errors may have originated from an input operation.
Input Source operations connected to node gates/clip_by_value:
gates/Const (defined at :203)
Original stack trace for 'gates/clip_by_value':
File "", line 49, in STG_FS
File "", line 116, in init
File "", line 234, in feature_selector
File "", line 221, in hard_sigmoid
File "/home/caolei/.local/lib/python3.6/site-packages/tensorflow/python/util/dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "/home/caolei/.local/lib/python3.6/site-pac

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Gentoo/Linux
Matrix products: default
BLAS/LAPACK: /home/caolei/software/anaconda3/envs/scRNA-seq/lib/libopenblasp-r0.3.18.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] DAseq_1.0.0 future_1.23.0 patchwork_1.1.1 ggplot2_3.3.5
[5] dplyr_1.0.7 cowplot_1.1.1 SeuratObject_4.0.4 Seurat_4.0.5
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_2.0-2 deldir_1.0-6
[4] ellipsis_0.3.2 class_7.3-19 ggridges_0.5.3
[7] rprojroot_2.0.2 proxy_0.4-26 spatstat.data_2.1-0
[10] farver_2.1.0 leiden_0.3.9 listenv_0.8.0
[13] ggrepel_0.9.1 prodlim_2019.11.13 fansi_0.5.0
[16] lubridate_1.8.0 codetools_0.2-18 splines_4.1.1
[19] polyclip_1.10-0 jsonlite_1.7.2 pROC_1.18.0
[22] caret_6.0-90 ica_1.0-2 cluster_2.1.2
[25] png_0.1-7 uwot_0.1.11 shiny_1.7.1
[28] sctransform_0.3.2 spatstat.sparse_2.0-0 BiocManager_1.30.16
[31] compiler_4.1.1 httr_1.4.2 assertthat_0.2.1
[34] Matrix_1.4-0 fastmap_1.1.0 lazyeval_0.2.2
[37] limma_3.50.0 later_1.3.0 htmltools_0.5.2
[40] tools_4.1.1 igraph_1.2.9 gtable_0.3.0
[43] glue_1.5.1 RANN_2.6.1 reshape2_1.4.4
[46] Rcpp_1.0.7 scattermore_0.7 vctrs_0.3.8
[49] nlme_3.1-153 iterators_1.0.13 lmtest_0.9-39
[52] timeDate_3043.102 gower_0.2.2 stringr_1.4.0
[55] globals_0.14.0 mime_0.12 miniUI_0.1.1.1
[58] lifecycle_1.0.1 irlba_2.3.5 goftest_1.2-3
[61] MASS_7.3-54 zoo_1.8-9 scales_1.1.1
[64] ipred_0.9-12 spatstat.core_2.3-2 promises_1.2.0.1
[67] spatstat.utils_2.2-0 parallel_4.1.1 RColorBrewer_1.1-2
[70] reticulate_1.22-9000 pbapply_1.5-0 gridExtra_2.3
[73] rpart_4.1-15 stringi_1.7.6 foreach_1.5.1
[76] e1071_1.7-9 lava_1.6.10 shape_1.4.6
[79] rlang_0.4.12 pkgconfig_2.0.3 matrixStats_0.61.0
[82] lattice_0.20-45 ROCR_1.0-11 purrr_0.3.4
[85] tensor_1.5 labeling_0.4.2 recipes_0.1.17
[88] htmlwidgets_1.5.4 tidyselect_1.1.1 here_1.0.1
[91] parallelly_1.29.0 RcppAnnoy_0.0.19 plyr_1.8.6
[94] magrittr_2.0.1 R6_2.5.1 generics_0.1.1
[97] DBI_1.1.1 pillar_1.6.4 withr_2.4.3
[100] mgcv_1.8-38 fitdistrplus_1.1-6 survival_3.2-13
[103] abind_1.4-5 nnet_7.3-16 tibble_3.1.6
[106] future.apply_1.8.1 crayon_1.4.2 KernSmooth_2.23-20
[109] utf8_1.2.2 spatstat.geom_2.3-0 plotly_4.10.0
[112] grid_4.1.1 data.table_1.14.2 ModelMetrics_1.2.2.2
[115] digest_0.6.29 xtable_1.8-4 tidyr_1.1.4
[118] httpuv_1.6.3 stats4_4.1.1 munsell_0.5.0
[121] glmnet_4.1-3 viridisLite_0.4.0

Do you know how to figure it out ? Do you need any more detailed information?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant