forked from georgetown-analytics/machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# algviz | ||
# Generate visualizations of classification, regression, and clustering | ||
# | ||
# Author: Benjamin Bengfort <[email protected]> | ||
# Created: Fri Feb 27 13:07:28 2015 -0500 | ||
# | ||
# Copyright (C) 2015 District Data Labs | ||
# For license information, see LICENSE.txt | ||
# | ||
# ID: algviz.py [] [email protected] $ | ||
|
||
""" | ||
Generate visualizations of classification, regression, and clustering | ||
""" | ||
|
||
########################################################################## | ||
## Imports | ||
########################################################################## | ||
|
||
import numpy as np | ||
from sklearn import datasets | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import ListedColormap | ||
|
||
from sklearn.lda import LDA | ||
from sklearn.naive_bayes import GaussianNB | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.neighbors import KNeighborsClassifier | ||
from sklearn.tree import DecisionTreeClassifier | ||
|
||
from sklearn.pipeline import Pipeline | ||
from sklearn.linear_model import LinearRegression | ||
from sklearn.preprocessing import PolynomialFeatures | ||
|
||
from sklearn.cluster import KMeans | ||
|
||
rgb_colors = ['#FF0000', '#00FF00', '#0000FF'] | ||
cm_bright = ListedColormap(rgb_colors) | ||
|
||
def visualize_classification(estimator, n_samples=100, n_features=2): | ||
# Create the linear dataset and estimator | ||
kwargs = { | ||
'n_samples': n_samples, | ||
'n_features': n_features, | ||
'n_classes': 3, | ||
'n_redundant': 0, | ||
'n_clusters_per_class': 1, | ||
'class_sep': 1.22, | ||
} | ||
X, y = datasets.make_classification(**kwargs) | ||
|
||
# Create the figure | ||
fix, axes = plt.subplots() | ||
|
||
# no ticks | ||
axes.set_xticks(()) | ||
axes.set_yticks(()) | ||
axes.set_ylabel('$x_1$') | ||
axes.set_xlabel('$x_0$') | ||
|
||
# Plot the surface | ||
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 | ||
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 | ||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), | ||
np.arange(y_min, y_max, 0.02)) | ||
|
||
Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) | ||
Z = Z.reshape(xx.shape) | ||
cs = plt.contourf(xx, yy, Z, cmap=cm_bright, alpha=0.3) | ||
|
||
# Plot the points on the grid | ||
axes.scatter(X[:,0], X[:,1], c=y, s=30, cmap=cm_bright) | ||
|
||
# Show the plot | ||
plt.axis("tight") | ||
plt.show() | ||
|
||
def visualize_regression(n_samples=100): | ||
def f(x): | ||
return np.sin(2 * np.pi * x) | ||
|
||
# Generate data | ||
X = np.random.uniform(0, 1, size=n_samples)[:,np.newaxis] | ||
y = f(X) + np.random.normal(scale=0.3, size=n_samples)[:,np.newaxis] | ||
|
||
# Create the linespace | ||
x_plot = np.linspace(0, 1, 100)[:,np.newaxis] | ||
|
||
poly = PolynomialFeatures(degree=6) | ||
lreg = LinearRegression() | ||
|
||
pipeline = Pipeline([("polynomial_features", poly), | ||
("linear_regression", lreg)]) | ||
pipeline.fit(X, y) | ||
|
||
# Create the figure | ||
fix, axes = plt.subplots() | ||
|
||
# no ticks | ||
axes.set_xticks(()) | ||
axes.set_yticks(()) | ||
axes.set_ylabel('$y$') | ||
axes.set_xlabel('$x$') | ||
|
||
# Plot the estimator and the true line | ||
axes.plot(x_plot, pipeline.predict(x_plot), color='red', label="estimated") | ||
axes.plot(x_plot, f(x_plot), color='green', label='true function') | ||
|
||
# Plot the points | ||
axes.scatter(X, y) | ||
|
||
plt.legend(loc="best") | ||
plt.show() | ||
|
||
def visualize_clustering(n_samples=350, n_centers=3, n_features=2): | ||
# Create the data | ||
X,y = datasets.make_blobs(n_samples=n_samples, centers=n_centers, n_features=n_features) | ||
|
||
# Create the estimator | ||
estimator = KMeans(n_clusters=n_centers, n_init=10) | ||
estimator.fit(X) | ||
|
||
centroids = estimator.cluster_centers_ | ||
|
||
# Create the figure | ||
fig, axes = plt.subplots() | ||
|
||
# Plot the clusters | ||
for k, col in zip(xrange(n_centers), rgb_colors): | ||
m = estimator.labels_ == k | ||
center = centroids[k] | ||
# axes.plot(X[m,0], X[m, 1], 'w', markerfacecolor=col, marker='.', markersize=10) | ||
axes.plot(center[0], center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=200, alpha=.15) | ||
|
||
# no ticks | ||
axes.set_xticks(()) | ||
axes.set_yticks(()) | ||
axes.set_ylabel('$x_1$') | ||
axes.set_xlabel('$x_0$') | ||
|
||
# Plot the points | ||
axes.scatter(X[:,0], X[:,1], c='k') | ||
|
||
plt.show() | ||
|
||
if __name__ == '__main__': | ||
# visualize_classification(KNeighborsClassifier(n_neighbors=3)) | ||
# visualize_regression() | ||
visualize_clustering() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,11 @@ | ||
matplotlib==1.4.3 | ||
mock==1.0.1 | ||
nose==1.3.4 | ||
numpy==1.9.1 | ||
pyparsing==2.0.3 | ||
python-dateutil==2.4.0 | ||
pytz==2014.10 | ||
scikit-learn==0.15.2 | ||
scipy==0.15.1 | ||
six==1.9.0 | ||
wsgiref==0.1.2 |