forked from isaac-sim/OmniIsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin_hand_manipulation.py
531 lines (437 loc) · 22.9 KB
/
in_hand_manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
from abc import abstractmethod
import numpy as np
import torch
from omni.isaac.core.prims import RigidPrimView, XFormPrim
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import add_reference_to_stage, get_current_stage
from omni.isaac.core.utils.torch import *
from omniisaacgymenvs.tasks.base.rl_task import RLTask
class InHandManipulationTask(RLTask):
def __init__(self, name, env, offset=None) -> None:
InHandManipulationTask.update_config(self)
RLTask.__init__(self, name, env)
self.x_unit_tensor = torch.tensor([1, 0, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.y_unit_tensor = torch.tensor([0, 1, 0], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.z_unit_tensor = torch.tensor([0, 0, 1], dtype=torch.float, device=self.device).repeat((self.num_envs, 1))
self.reset_goal_buf = self.reset_buf.clone()
self.successes = torch.zeros(self.num_envs, dtype=torch.float, device=self.device)
self.consecutive_successes = torch.zeros(1, dtype=torch.float, device=self.device)
self.randomization_buf = torch.zeros(self.num_envs, dtype=torch.long, device=self.device)
self.av_factor = torch.tensor(self.av_factor, dtype=torch.float, device=self.device)
self.total_successes = 0
self.total_resets = 0
def update_config(self):
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self.dist_reward_scale = self._task_cfg["env"]["distRewardScale"]
self.rot_reward_scale = self._task_cfg["env"]["rotRewardScale"]
self.action_penalty_scale = self._task_cfg["env"]["actionPenaltyScale"]
self.success_tolerance = self._task_cfg["env"]["successTolerance"]
self.reach_goal_bonus = self._task_cfg["env"]["reachGoalBonus"]
self.fall_dist = self._task_cfg["env"]["fallDistance"]
self.fall_penalty = self._task_cfg["env"]["fallPenalty"]
self.rot_eps = self._task_cfg["env"]["rotEps"]
self.vel_obs_scale = self._task_cfg["env"]["velObsScale"]
self.reset_position_noise = self._task_cfg["env"]["resetPositionNoise"]
self.reset_rotation_noise = self._task_cfg["env"]["resetRotationNoise"]
self.reset_dof_pos_noise = self._task_cfg["env"]["resetDofPosRandomInterval"]
self.reset_dof_vel_noise = self._task_cfg["env"]["resetDofVelRandomInterval"]
self.hand_dof_speed_scale = self._task_cfg["env"]["dofSpeedScale"]
self.use_relative_control = self._task_cfg["env"]["useRelativeControl"]
self.act_moving_average = self._task_cfg["env"]["actionsMovingAverage"]
self.max_episode_length = self._task_cfg["env"]["episodeLength"]
self.reset_time = self._task_cfg["env"].get("resetTime", -1.0)
self.print_success_stat = self._task_cfg["env"]["printNumSuccesses"]
self.max_consecutive_successes = self._task_cfg["env"]["maxConsecutiveSuccesses"]
self.av_factor = self._task_cfg["env"].get("averFactor", 0.1)
self.dt = 1.0 / 60
control_freq_inv = self._task_cfg["env"].get("controlFrequencyInv", 1)
if self.reset_time > 0.0:
self.max_episode_length = int(round(self.reset_time / (control_freq_inv * self.dt)))
print("Reset time: ", self.reset_time)
print("New episode length: ", self.max_episode_length)
def set_up_scene(self, scene) -> None:
self._stage = get_current_stage()
self._assets_root_path = get_assets_root_path()
self.get_starting_positions()
self.get_hand()
self.object_start_translation = self.hand_start_translation.clone()
self.object_start_translation[1] += self.pose_dy
self.object_start_translation[2] += self.pose_dz
self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device)
self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor
self.goal_start_translation[2] -= 0.04
self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.get_object(self.hand_start_translation, self.pose_dy, self.pose_dz)
self.get_goal()
super().set_up_scene(scene, filter_collisions=False)
self._hands = self.get_hand_view(scene)
scene.add(self._hands)
self._objects = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/object/object",
name="object_view",
reset_xform_properties=False,
masses=torch.tensor([0.07087] * self._num_envs, device=self.device),
)
scene.add(self._objects)
self._goals = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False
)
self._goals._non_root_link = True # hack to ignore kinematics
scene.add(self._goals)
if self._dr_randomizer.randomize:
self._dr_randomizer.apply_on_startup_domain_randomization(self)
def initialize_views(self, scene):
RLTask.initialize_views(self, scene)
if scene.object_exists("shadow_hand_view"):
scene.remove_object("shadow_hand_view", registry_only=True)
if scene.object_exists("finger_view"):
scene.remove_object("finger_view", registry_only=True)
if scene.object_exists("allegro_hand_view"):
scene.remove_object("allegro_hand_view", registry_only=True)
if scene.object_exists("goal_view"):
scene.remove_object("goal_view", registry_only=True)
if scene.object_exists("object_view"):
scene.remove_object("object_view", registry_only=True)
self.get_starting_positions()
self.object_start_translation = self.hand_start_translation.clone()
self.object_start_translation[1] += self.pose_dy
self.object_start_translation[2] += self.pose_dz
self.object_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self.goal_displacement_tensor = torch.tensor([-0.2, -0.06, 0.12], device=self.device)
self.goal_start_translation = self.object_start_translation + self.goal_displacement_tensor
self.goal_start_translation[2] -= 0.04
self.goal_start_orientation = torch.tensor([1.0, 0.0, 0.0, 0.0], device=self.device)
self._hands = self.get_hand_view(scene)
scene.add(self._hands)
self._objects = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/object/object",
name="object_view",
reset_xform_properties=False,
masses=torch.tensor([0.07087] * self._num_envs, device=self.device),
)
scene.add(self._objects)
self._goals = RigidPrimView(
prim_paths_expr="/World/envs/env_.*/goal/object", name="goal_view", reset_xform_properties=False
)
self._goals._non_root_link = True # hack to ignore kinematics
scene.add(self._goals)
if self._dr_randomizer.randomize:
self._dr_randomizer.apply_on_startup_domain_randomization(self)
@abstractmethod
def get_hand(self):
pass
@abstractmethod
def get_hand_view(self):
pass
@abstractmethod
def get_observations(self):
pass
def get_object(self, hand_start_translation, pose_dy, pose_dz):
self.object_usd_path = f"{self._assets_root_path}/Isaac/Props/Blocks/block_instanceable.usd"
add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/object")
obj = XFormPrim(
prim_path=self.default_zero_env_path + "/object/object",
name="object",
translation=self.object_start_translation,
orientation=self.object_start_orientation,
scale=self.object_scale,
)
self._sim_config.apply_articulation_settings(
"object", get_prim_at_path(obj.prim_path), self._sim_config.parse_actor_config("object")
)
def get_goal(self):
add_reference_to_stage(self.object_usd_path, self.default_zero_env_path + "/goal")
goal = XFormPrim(
prim_path=self.default_zero_env_path + "/goal",
name="goal",
translation=self.goal_start_translation,
orientation=self.goal_start_orientation,
scale=self.object_scale,
)
self._sim_config.apply_articulation_settings(
"goal", get_prim_at_path(goal.prim_path), self._sim_config.parse_actor_config("goal_object")
)
def post_reset(self):
self.num_hand_dofs = self._hands.num_dof
self.actuated_dof_indices = self._hands.actuated_dof_indices
self.hand_dof_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
self.prev_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
self.cur_targets = torch.zeros((self.num_envs, self.num_hand_dofs), dtype=torch.float, device=self.device)
dof_limits = self._hands.get_dof_limits()
self.hand_dof_lower_limits, self.hand_dof_upper_limits = torch.t(dof_limits[0].to(self.device))
self.hand_dof_default_pos = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device)
self.hand_dof_default_vel = torch.zeros(self.num_hand_dofs, dtype=torch.float, device=self.device)
self.object_init_pos, self.object_init_rot = self._objects.get_world_poses()
self.object_init_pos -= self._env_pos
self.object_init_velocities = torch.zeros_like(
self._objects.get_velocities(), dtype=torch.float, device=self.device
)
self.goal_pos = self.object_init_pos.clone()
self.goal_pos[:, 2] -= 0.04
self.goal_rot = self.object_init_rot.clone()
self.goal_init_pos = self.goal_pos.clone()
self.goal_init_rot = self.goal_rot.clone()
# randomize all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
if self._dr_randomizer.randomize:
self._dr_randomizer.set_up_domain_randomization(self)
def get_object_goal_observations(self):
self.object_pos, self.object_rot = self._objects.get_world_poses(clone=False)
self.object_pos -= self._env_pos
self.object_velocities = self._objects.get_velocities(clone=False)
self.object_linvel = self.object_velocities[:, 0:3]
self.object_angvel = self.object_velocities[:, 3:6]
def calculate_metrics(self):
(
self.rew_buf[:],
self.reset_buf[:],
self.reset_goal_buf[:],
self.progress_buf[:],
self.successes[:],
self.consecutive_successes[:],
) = compute_hand_reward(
self.rew_buf,
self.reset_buf,
self.reset_goal_buf,
self.progress_buf,
self.successes,
self.consecutive_successes,
self.max_episode_length,
self.object_pos,
self.object_rot,
self.goal_pos,
self.goal_rot,
self.dist_reward_scale,
self.rot_reward_scale,
self.rot_eps,
self.actions,
self.action_penalty_scale,
self.success_tolerance,
self.reach_goal_bonus,
self.fall_dist,
self.fall_penalty,
self.max_consecutive_successes,
self.av_factor,
)
self.extras["consecutive_successes"] = self.consecutive_successes.mean()
self.randomization_buf += 1
if self.print_success_stat:
self.total_resets = self.total_resets + self.reset_buf.sum()
direct_average_successes = self.total_successes + self.successes.sum()
self.total_successes = self.total_successes + (self.successes * self.reset_buf).sum()
# The direct average shows the overall result more quickly, but slightly undershoots long term policy performance.
print(
"Direct average consecutive successes = {:.1f}".format(
direct_average_successes / (self.total_resets + self.num_envs)
)
)
if self.total_resets > 0:
print(
"Post-Reset average consecutive successes = {:.1f}".format(self.total_successes / self.total_resets)
)
def pre_physics_step(self, actions):
if not self.world.is_playing():
return
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
goal_env_ids = self.reset_goal_buf.nonzero(as_tuple=False).squeeze(-1)
reset_buf = self.reset_buf.clone()
# if only goals need reset, then call set API
if len(goal_env_ids) > 0 and len(env_ids) == 0:
self.reset_target_pose(goal_env_ids)
elif len(goal_env_ids) > 0:
self.reset_target_pose(goal_env_ids)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.actions = actions.clone().to(self.device)
if self.use_relative_control:
targets = (
self.prev_targets[:, self.actuated_dof_indices] + self.hand_dof_speed_scale * self.dt * self.actions
)
self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(
targets,
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
else:
self.cur_targets[:, self.actuated_dof_indices] = scale(
self.actions,
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
self.cur_targets[:, self.actuated_dof_indices] = (
self.act_moving_average * self.cur_targets[:, self.actuated_dof_indices]
+ (1.0 - self.act_moving_average) * self.prev_targets[:, self.actuated_dof_indices]
)
self.cur_targets[:, self.actuated_dof_indices] = tensor_clamp(
self.cur_targets[:, self.actuated_dof_indices],
self.hand_dof_lower_limits[self.actuated_dof_indices],
self.hand_dof_upper_limits[self.actuated_dof_indices],
)
self.prev_targets[:, self.actuated_dof_indices] = self.cur_targets[:, self.actuated_dof_indices]
self._hands.set_joint_position_targets(
self.cur_targets[:, self.actuated_dof_indices], indices=None, joint_indices=self.actuated_dof_indices
)
if self._dr_randomizer.randomize:
rand_envs = torch.where(
self.randomization_buf >= self._dr_randomizer.min_frequency,
torch.ones_like(self.randomization_buf),
torch.zeros_like(self.randomization_buf),
)
rand_env_ids = torch.nonzero(torch.logical_and(rand_envs, reset_buf))
self.dr.physics_view.step_randomization(rand_env_ids)
self.randomization_buf[rand_env_ids] = 0
def is_done(self):
pass
def reset_target_pose(self, env_ids):
# reset goal
indices = env_ids.to(dtype=torch.int32)
rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), 4), device=self.device)
new_rot = randomize_rotation(
rand_floats[:, 0], rand_floats[:, 1], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]
)
self.goal_pos[env_ids] = self.goal_init_pos[env_ids, 0:3]
self.goal_rot[env_ids] = new_rot
goal_pos, goal_rot = self.goal_pos.clone(), self.goal_rot.clone()
goal_pos[env_ids] = (
self.goal_pos[env_ids] + self.goal_displacement_tensor + self._env_pos[env_ids]
) # add world env pos
self._goals.set_world_poses(goal_pos[env_ids], goal_rot[env_ids], indices)
self.reset_goal_buf[env_ids] = 0
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
rand_floats = torch_rand_float(-1.0, 1.0, (len(env_ids), self.num_hand_dofs * 2 + 5), device=self.device)
self.reset_target_pose(env_ids)
# reset object
new_object_pos = (
self.object_init_pos[env_ids] + self.reset_position_noise * rand_floats[:, 0:3] + self._env_pos[env_ids]
) # add world env pos
new_object_rot = randomize_rotation(
rand_floats[:, 3], rand_floats[:, 4], self.x_unit_tensor[env_ids], self.y_unit_tensor[env_ids]
)
object_velocities = torch.zeros_like(self.object_init_velocities, dtype=torch.float, device=self.device)
self._objects.set_velocities(object_velocities[env_ids], indices)
self._objects.set_world_poses(new_object_pos, new_object_rot, indices)
# reset hand
delta_max = self.hand_dof_upper_limits - self.hand_dof_default_pos
delta_min = self.hand_dof_lower_limits - self.hand_dof_default_pos
rand_delta = delta_min + (delta_max - delta_min) * 0.5 * (rand_floats[:, 5 : 5 + self.num_hand_dofs] + 1.0)
pos = self.hand_dof_default_pos + self.reset_dof_pos_noise * rand_delta
dof_pos = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device)
dof_pos[env_ids, :] = pos
dof_vel = torch.zeros((self.num_envs, self.num_hand_dofs), device=self.device)
dof_vel[env_ids, :] = (
self.hand_dof_default_vel
+ self.reset_dof_vel_noise * rand_floats[:, 5 + self.num_hand_dofs : 5 + self.num_hand_dofs * 2]
)
self.prev_targets[env_ids, : self.num_hand_dofs] = pos
self.cur_targets[env_ids, : self.num_hand_dofs] = pos
self.hand_dof_targets[env_ids, :] = pos
self._hands.set_joint_position_targets(self.hand_dof_targets[env_ids], indices)
self._hands.set_joint_positions(dof_pos[env_ids], indices)
self._hands.set_joint_velocities(dof_vel[env_ids], indices)
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 0
self.successes[env_ids] = 0
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def randomize_rotation(rand0, rand1, x_unit_tensor, y_unit_tensor):
return quat_mul(
quat_from_angle_axis(rand0 * np.pi, x_unit_tensor), quat_from_angle_axis(rand1 * np.pi, y_unit_tensor)
)
@torch.jit.script
def compute_hand_reward(
rew_buf,
reset_buf,
reset_goal_buf,
progress_buf,
successes,
consecutive_successes,
max_episode_length: float,
object_pos,
object_rot,
target_pos,
target_rot,
dist_reward_scale: float,
rot_reward_scale: float,
rot_eps: float,
actions,
action_penalty_scale: float,
success_tolerance: float,
reach_goal_bonus: float,
fall_dist: float,
fall_penalty: float,
max_consecutive_successes: int,
av_factor: float,
):
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)
# Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(
torch.clamp(torch.norm(quat_diff[:, 1:4], p=2, dim=-1), max=1.0)
) # changed quat convention
dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0 / (torch.abs(rot_dist) + rot_eps) * rot_reward_scale
action_penalty = torch.sum(actions**2, dim=-1)
# Total reward is: position distance + orientation alignment + action regularization + success bonus + fall penalty
reward = dist_rew + rot_rew + action_penalty * action_penalty_scale
# Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = successes + goal_resets
# Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)
# Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)
# Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:
# Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(
torch.abs(rot_dist) <= success_tolerance, torch.zeros_like(progress_buf), progress_buf
)
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)
resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets)
# Apply penalty for not reaching the goal
if max_consecutive_successes > 0:
reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward)
num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())
cons_successes = torch.where(
num_resets > 0,
av_factor * finished_cons_successes / num_resets + (1.0 - av_factor) * consecutive_successes,
consecutive_successes,
)
return reward, resets, goal_resets, progress_buf, successes, cons_successes