Skip to content

JorgeDeLosSantos/nusa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Python library for structural analysis using the finite element method, designed for academic purposes.

Versions

  • 0.1.0 (16/11/2016)
  • 0.2.0 (14/07/2019)
  • 0.3.dev0 Development version

Requirements

  • NumPy
  • Matplotlib
  • Tabulate
  • GMSH

Installation

From PyPI (0.2.0 version):

$ pip install nusa

or from this repo (development version):

$ pip install git+https://github.com/JorgeDeLosSantos/nusa.git

Elements type supported

  • Spring
  • Bar
  • Truss
  • Beam
  • Linear triangle (currently, only plane stress)

Mini-Demos

Linear Triangle Element

from nusa import *
import nusa.mesh as nmsh

md = nmsh.Modeler()
a = md.add_rectangle((0,0),(1,1), esize=0.1)
b = md.add_circle((0.5,0.5), 0.1, esize=0.05)
md.substract_surfaces(a,b)
nc, ec = md.generate_mesh()
x,y = nc[:,0], nc[:,1]

nodos = []
elementos = []

for k,nd in enumerate(nc):
    cn = Node((x[k],y[k]))
    nodos.append(cn)
    
for k,elm in enumerate(ec):
    i,j,m = int(elm[0]),int(elm[1]),int(elm[2])
    ni,nj,nm = nodos[i],nodos[j],nodos[m]
    ce = LinearTriangle((ni,nj,nm),200e9,0.3,0.1)
    elementos.append(ce)

m = LinearTriangleModel()
for node in nodos: m.add_node(node)
for elm in elementos: m.add_element(elm)
    
# Boundary conditions and loads
minx, maxx = min(x), max(x)
miny, maxy = min(y), max(y)

for node in nodos:
    if node.x == minx:
        m.add_constraint(node, ux=0, uy=0)
    if node.x == maxx:
        m.add_force(node, (10e3,0))

m.plot_model()
m.solve()
m.plot_nsol("seqv")

Spring element

Example 01. For the spring assemblage with arbitrarily numbered nodes shown in the figure obtain (a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the reaction forces at nodes 1 and 2, and (d) the forces in each spring. A force of 5000 lb is applied at node 4 in the x direction. The spring constants are given in the figure. Nodes 1 and 2 are fixed.

# -*- coding: utf-8 -*-
# NuSA Demo
from nusa import *
    
def test1():
    """
    Logan, D. (2007). A first course in the finite element analysis.
    Example 2.1, pp. 42.
    """
    P = 5000.0

    # Model
    m1 = SpringModel("2D Model")

    # Nodes
    n1 = Node((0,0))
    n2 = Node((0,0))
    n3 = Node((0,0))
    n4 = Node((0,0))

    # Elements
    e1 = Spring((n1,n3),1000.0)
    e2 = Spring((n3,n4),2000.0)
    e3 = Spring((n4,n2),3000.0)

    # Adding elements and nodes to the model
    for nd in (n1,n2,n3,n4):
        m1.add_node(nd)
    for el in (e1,e2,e3):
        m1.add_element(el)

    m1.add_force(n4, (P,))
    m1.add_constraint(n1, ux=0)
    m1.add_constraint(n2, ux=0)
    m1.solve()

if __name__ == '__main__':
    test1()

Beam element

Example 02. For the beam and loading shown, determine the deflection at point C. Use E = 29 x 106 psi.

"""
Beer & Johnston. (2012) Mechanics of materials. 
Problem 9.13 , pp. 568.
"""
from nusa import *

# Input data 
E = 29e6
I = 291 # W14x30 
P = 35e3
L1 = 5*12 # in
L2 = 10*12 #in
# Model
m1 = BeamModel("Beam Model")
# Nodes
n1 = Node((0,0))
n2 = Node((L1,0))
n3 = Node((L1+L2,0))
# Elements
e1 = Beam((n1,n2),E,I)
e2 = Beam((n2,n3),E,I)

# Add elements 
for nd in (n1,n2,n3): m1.add_node(nd)
for el in (e1,e2): m1.add_element(el)
    
m1.add_force(n2, (-P,))
m1.add_constraint(n1, ux=0, uy=0) # fixed 
m1.add_constraint(n3, uy=0) # fixed
m1.solve() # Solve model

# Displacement at C point
print(n2.uy)

GUIs based on NuSA

Documentation

To build documentation based on docstrings execute the docs/toHTML.py script. (Sphinx required)

Tutorials (Jupyter notebooks):

Spanish version (in progress):

English version (TODO):

About...

Developer: Pedro Jorge De Los Santos
E-mail: [email protected]