Status: This repository is still under development, expecting new features/papers and a complete tutorial to explain it. Feel free to raise questions/suggestions through GitHub Issues, if you want to use the current version of this repository.
This repository provides a toolkit to test control and planning problems for car racing simulation environment.
Click to open Table of Contents
If you find this project useful in your work, please consider citing following papers:
Parallelized optimization for overtake racing behavior with multiple autonomous vehicles [IEEE] [arXiv] [Video]
@inproceedings{he2022parallel,
title={Autonomous racing with multiple vehicles using a parallelized optimization with safety guarantee using control barrier functions},
author={He, Suiyi and Zeng, Jun and Sreenath, Koushil},
booktitle={2022 IEEE International Conference on Robotics and Automation (ICRA)},
year={2022}
}
Design model predictive control with control barrier functions for obstacle avoidance in car racing problems [IEEE] [arXiv] [NorCal Control Workshop Talk]
@inproceedings{zeng2021mpccbf,
title={Safety-critical model predictive control with discrete-time control barrier function},
author={Zeng, Jun and Zhang, Bike and Sreenath, Koushil},
booktitle={2021 American Control Conference (ACC)},
year={2021},
volume={},
number={},
pages={3882-3889}
}
- We recommend creating a new conda environment:
conda env create -f environment.yml
conda activate car-racing
Run following command in terminal to install the car racing simulator package.
pip install -e .
In this project, pytest
is used to test the code autonomously after pushing new code to the repository. Currently, three files in the tests
folder are used for testing pid or mpc tracking controller, mpc-cbf controller and racing game planner, respectively. To test other features, add files to the tests
folder and update the tests.yml
file under the .github/workflows
folder.
Execute pre-commit install
to install git hooks in your .git/
directory, which allows auto-formatting if you are willing to contribute to this repository.
Please contact major contributors of this repository for additional information.
The following documentation contains documentation and common terminal commands for simulations and testing.
Run
python car_racing/tests/system_identification_test.py
This allows to identify the linearized dynamics of the racing car by regression.
Run
python car_racing/tests/control_test.py --ctrl-policy mpc-lti --track-layout l_shape --simulation --plotting --animation
This allows to test algorithm for tracking. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
ctrl_policy |
string | pid , mpc-lti , lqr |
control policy |
track_layout |
string | l_shape , m_shape , goggle , ellipse |
track layouts |
simulation |
action | store_true |
generate simulation data if true, otherwise read simulation data from existing files |
plotting |
action | store_true |
save plotting if true |
animation |
action | store_true |
save animation if true |
Run
python car_racing/tests/mpccbf_test.py --track-layout l_shape --simulation --plotting --animation
This allows to test algorithm for MPC-CBF controller. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
track_layout |
string | l_shape , m_shape , goggle , ellipse |
track layouts |
simulation |
action | store_true |
generate simulation data if true, otherwise read simulation data from existing files |
plotting |
action | store_true |
save plotting if true |
animation |
action | store_true |
save animation if true |
Run
python car_racing/tests/ilqr_test.py --track-layout l_shape --simulation --plotting --animation
This allows to test algorithm for iLQR controller. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
track_layout |
string | l_shape , m_shape , goggle , ellipse |
track layouts |
simulation |
action | store_true |
generate simulation data if true, otherwise read simulation data from existing files |
plotting |
action | store_true |
save plotting if true |
animation |
action | store_true |
save animation if true |
To save the historic states and inputs used for learning-based MPC, run the following command for each track layout firstly:
python car_racing/tests/lmpc_test.py \
--track-layout l_shape --lap-number 7 --simulation --save-trajectory
Then you can run the following command:
python car_racing/tests/lmpc_test.py \
--track-layout l_shape --lap-number 10 --simulation --direct-lmpc --animation --plotting
This allows to test algorithm for learning-based MPC. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
track_layout |
string | l_shape , m_shape , goggle , ellipse |
track layouts |
lap_number |
int | any number that is greater than 2 |
number of laps that will be simulated |
direct_lmpc |
action | store_true |
if true, the simulator will begin the LMPC controller directly using store trajectories |
zero_noise |
action | store_true |
no noises in dynamic update if true |
save_trajectory |
action | store_true |
if true and when the controller is LMPC, simulator will store the history states and inputs |
simulation |
action | store_true |
generate simulation data if true, otherwise read simulation data from existing files |
plotting |
action | store_true |
save plotting if true |
animation |
action | store_true |
save animation if true |
To save the historic states and inputs used for learning-based MPC, run the following command for each track layout firstly:
python car_racing/tests/overtake_planner_test.py \
--track-layout l_shape --lap-number 7 --simulation --number-other-agents 0 --save-trajectory
Then you can run the following command:
python car_racing/tests/overtake_planner_test.py \
--track-layout l_shape --lap-number 10 --simulation --direct-lmpc --animation --plotting --number-other-agents 3
This allows to test algorithm for racing competition. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
track_layout |
string | l_shape , m_shape , goggle , ellipse |
track layouts |
lap_number |
int | any number that is greater than 2 |
number of laps that will be simulated |
direct_lmpc |
action | store_true |
if true, the simulator will begin the LMPC controller directly using store trajectories |
sim_replay |
action | store_true |
if true, by changingfile path, the simulator will simulate with different parameters but from same initial conditions |
zero_noise |
action | store_true |
no noises in dynamic update if true |
diff_alpha |
action | store_true |
if true, different alpha values will be used for same initial conditions |
random_other_agents |
action | store_true |
other agents will be generated randomly if true |
number_other_agents |
int | any number that is greater than 0 , when it is set to 0 , the algorithm is LMPC |
number of agents that will be generated |
save_trajectory |
action | store_true |
if true and when the controller is LMPC, simulator will store the history states and inputs |
multi_tests |
action | store_true |
if ture, 100 groups of randomly generated tests will be simulated |
simulation |
action | store_true |
generate simulation data if true, otherwise read simulation data from existing files |
plotting |
action | store_true |
save plotting if true |
animation |
action | store_true |
save animation if true |
Currently, path planner and trajecotry planner are available for the overtaking maneuver. Changing the varibale self.path_planner
in base.py
to True
allows the controller to simulate with path planner.
To start the simulator, run the following command in terminal:
roslaunch car_racing car_racing_sim.launch track_layout:=goggle
This allows you to run the simulator and visualization node. Change the track_layout
, you can get differnt tracks. The center line of the race track is plotted in red dash line; the optimal trajectory of the race track is plotted in green line.
To add new vehicle with controller in the simulator, run the following commands in new terminals:
rosrun car_racing vehicle.py --veh-name vehicle1 --color blue --vx 0 --vy 0 --wz 0 --epsi 0 --s 0 --ey 0
rosrun car_racing controller.py --ctrl-policy mpc-lti --veh-name vehicle1
These allow to start nodes for the vehicle and corresponding controller. The argparse arguments are listed as follow,
name | type | choices | description |
---|---|---|---|
veh_name |
string | a self-defined name | vehicle's name |
color |
string | color's name | vehicle's color in animation |
vs , vy , wz , epsi , s , ey |
float | initial states | vehicle's initial states in Frenet coordinates |
ctrl_policy |
string | pid , mpc-lti , mpc-cbf , lmpc |
vehicle's controller type |