Skip to content

This crate provides bounded-integer types with **very** specific behavior

License

Notifications You must be signed in to change notification settings

Houtamelo/comfy-bounded-ints

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bounded-integer types focused on ergonomics and safety.

The goal of this crate is to allow users to fearlessly use bounded integers without worrying about checking the operations performed on them.

There is one exception: division by zero will still panic.

Make sure to carefully read this README before using it.

Since all bounded types behave equally, this README is the entire documentation.

  • No unsafe code.
  • All operations are saturated, no overflow/underflow, no wrapping.
  • Division by zero still panics.
  • Focused on ergonomics(comfyness): operations with different integer types (e.g. i8 and i16) are allowed, those are evaluated using a larger type, then the result is saturated to the target type.
  • Operations will always be at least as slow as the std::saturating operations. If you need speed, consider getting a copy of the inner value using .get() or the deref * operator.
  • Mostly test-covered. Currently, the derived Hash/PartialOrd/Ord traits are not covered by unit tests.

Features

All features are disabled by default.

  • div_assign_zero: Enables unchecked division by zero. (Division by non-zero types (NonZeroI8, ...) is provided without this feature).
  • serde: Enables serde Serialization/Deserialization support, all bounded types are serialized transparently as their inner value. Example: assert_eq!(serde_json::to_string(&Bound_i8::<0, 10>::new(5)).unwrap(), serde_json::to_string(&5_i8).unwrap()).

Quirks

All rust signed/unsigned types are supported: i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize

use comfy_bounded_ints::{
    Bound_i8, Bound_i16, Bound_i32, Bound_i64, Bound_i128, Bound_isize,
    Bound_u8, Bound_u16, Bound_u32, Bound_u64, Bound_u128, Bound_usize
};

Constraints are enforced at compile-time, you specify them using const params

Use the new function to create a new bounded type. cargo build will not compile if MIN > MAX

use comfy_bounded_ints::Bound_i16;

let bounded = Bound_i16::<20, 50>::new(30);
                          ^^^^^^

This crate guarantees that the inner value will always be within the specified range

No operations can violate this rule.

use comfy_bounded_ints::Bound_i32;

let bounded = Bound_i32::<20, 50>::new(80);
assert_eq!(bounded.get(), 50);
           ^^^^^^^^^^^^^^^^^

let bounded = Bound_i32::<20, 50>::new(10);
assert_eq!(bounded.get(), 20);
           ^^^^^^^^^^^^^^^^^

You can get a copy of the inner value using the .get() method or the deref * operator

use comfy_bounded_ints::Bound_i64;

let bounded = Bound_i64::<20, 50>::new(30);
assert_eq!(bounded.get(), 30);
                  ^^^^^^
assert_eq!(*bounded, 30);
           ^

Note that none of the bounded types implement DerefMut, as this would allow violating the constraints.

If you want to mutate the inner value, you can use the .set() method, or any of the assign operators.

use comfy_bounded_ints::Bound_isize;

let mut bounded = Bound_isize::<20, 50>::new(30);
bounded.set(40);
       ^^^^^^^^
assert_eq!(bounded.get(), 40);

bounded += 10;
        ^^
assert_eq!(bounded.get(), 50);

bounded.set(10);
       ^^^^^^^^
assert_eq!(bounded.get(), 20);

bounded.set(80);
       ^^^^^^^^
assert_eq!(bounded.get(), 50);

bounded -= 10;
        ^^
assert_eq!(bounded.get(), 40);

bounded /= 2;
        ^^
assert_eq!(bounded.get(), 20);

bounded *= 2;
        ^^
assert_eq!(bounded.get(), 40);

bounded %= 30;
        ^^
assert_eq!(bounded.get(), 20);

AddAssign/SubAssign/MulAssign/DivAssign/RemAssign

Are allowed between different integer types, as well as bounded types with different constraints. The regular Add/Sub/Mul/Div/Rem operations are not supported, use .get or * deref to perform them on the inner value instead. Support for the regular operations is not provided due to ambiguity in which type should be returned.

use comfy_bounded_ints::{Bound_i8, Bound_i16, Bound_u8, Bound_u32, Bound_isize};

let mut bounded_i8 = Bound_i8::<20, 50>::new(30);
let bounded_i16 = Bound_i16::< -200, 500>::new(-200);
bounded_i8 += bounded_i16;
           ^^
assert_eq!(bounded_i8.get(), 20);

let mut bounded_i8 = Bound_i8::< -128, 127>::new(-128);
let bounded_i16 = Bound_i16::< -300, 500>::new(-300);
bounded_i8 -= bounded_i16;
           ^^
assert_eq!(bounded_i8.get(), 127);

let mut bounded_u8 = Bound_u8::< 5, 80>::new(70);
let bounded_i16 = Bound_i16::< -300, 500>::new(-1);
bounded_u8 *= bounded_i16;
           ^^
assert_eq!(bounded_u8.get(), 5);

let mut bounded_u32 = Bound_u8::< 2, 650>::new(800);
let bounded_i8 = Bound_i8::< -30, 10>::new(-1);
bounded_u32 /= bounded_i8;
            ^^
assert_eq!(bounded_u32.get(), 2);

let mut bounded_u32 = Bound_u32::< 3, 650>::new(800);
let bounded_i8 = Bound_i8::< -30, 10>::new(-1);
bounded_u32 %= bounded_i8;
            ^^
assert_eq!(bounded_u32.get(), 3);

let mut bounded_isize = Bound_isize::<0, 200>::new(80);
let int_i8 = 30_i8;
bounded_isize += int_i8;
              ^^
assert_eq!(bounded_isize.get(), 110);

let mut bounded_isize = Bound_isize::<0, 200>::new(80);
let int_i32 = -900_i32;
bounded_isize += int_i32;
              ^^
assert_eq!(bounded_isize.get(), 0);

...

The Default trait is implemented for all bounded types

It creates a new bounded type with the minimum value as the inner value.

All bounded types #[derive(Debug, Copy, Clone, Hash, PartialOrd, Ord, Eq)]

All bounded types implement DivAssign/RemAssign for their respective NonZero type

This does not require the div_assign_zero feature.

use comfy_bounded_ints::{Bound_i8, Bound_u128};

let mut bounded_i8 = Bound_i8::< -30, 80>::new(-120);
let non_zero_i8 = NonZeroI8::new(-2).unwrap();
bounded_i8 *= non_zero_i8;
           ^^
assert_eq!(bounded_i8.get(), 60);

let mut bounded_u128 = Bound_u128::< 3, 650>::new(800);
let non_zero_u128 = NonZeroU128::new(2).unwrap();
bounded_u128 /= non_zero_u128;
             ^^
assert_eq!(bounded_u128.get(), 325);

All bounded types can be created from any integer type using the From trait

This trait also provides a blanket implementation allowing any integer to be converted to a given bounded type using the method .into().

use comfy_bounded_ints::{Bound_i8, Bound_isize, Bound_u8, Bound_u32};

let bounded_i8 = Bound_i8::< -30, 80>::from(-120_i8);
                                       ^^^^^^^^^^^^^
assert_eq!(bounded_i8.get(), -30);

let bounded_u32 = Bound_u32::< 2, 650>::from(-800_i32);
                                        ^^^^^^^^^^^^^^
assert_eq!(bounded_u32.get(), 2);

let bounded_isize: Bound_isize<20, 100> = 50_u128.into();
                                                 ^^^^^^^
assert_eq!(bounded_isize.get(), 50);

let bounded_u8: Bound_u8<20, 100> = -50_i64.into();
                                           ^^^^^^^
assert_eq!(bounded_u8.get(), 20);

PartialEq is implemented between bounded types with the same inner integer type

Constraints are irrelevant for this comparison. For other comparisons, you can use the .get() method or the deref * operator, then compare using the inner values.

use comfy_bounded_ints::{Bound_i8, Bound_u16};

let a_i8 = Bound_i8::< -30, 80>::new(-120);
let b_i8 = Bound_i8::< -30, 80>::new(20);
assert!(a_i8 != b_i8);

let a_u16 = Bound_u16::< 2, 650>::new(800);
let b_u16 = Bound_u16::< 2, 650>::new(650);
assert!(a_u16 == b_u16);

About

This crate provides bounded-integer types with **very** specific behavior

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages