Skip to content

Commit

Permalink
tidy up blog posts and add new one on LSM
Browse files Browse the repository at this point in the history
  • Loading branch information
Hadrien-Montanelli committed Feb 1, 2024
1 parent 790a0bb commit ce26bd5
Show file tree
Hide file tree
Showing 20 changed files with 314 additions and 442 deletions.
4 changes: 1 addition & 3 deletions 2017-10-09.html
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,7 @@ <h1>When planets dance</h1>
<p>Since the integral of \(K(t)\) does not depend on \(j\) and the integral of \(U(t)\) only depends on \(i-j\), the action can be rewritten
$$
\begin{align}
A = \, & \frac{n}{2}\int_0^{2\pi} \big\vert q'(t) \big\vert^2 dt \\
& + \frac{n}{2}\sum_{j=1}^{n-1} \int_0^{2\pi} \Big\vert q(t) - q\Big(t + \frac{2\pi j}{n}\Big) \Big\vert^{-1}dt.
A = \frac{n}{2}\int_0^{2\pi} \big\vert q'(t) \big\vert^2 dt + \frac{n}{2}\sum_{j=1}^{n-1} \int_0^{2\pi} \Big\vert q(t) - q\Big(t + \frac{2\pi j}{n}\Big) \Big\vert^{-1}dt.
\end{align}
$$
Choreographies correspond to functions \(q(t)\) which minimize \(A\). Since these are closed curves in the complex plane, these can be represented by
Expand All @@ -170,7 +169,6 @@ <h1>When planets dance</h1>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2023 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
1 change: 0 additions & 1 deletion 2017-10-26.html
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ <h1>Solving PDEs on the sphere</h1>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2023 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
1 change: 0 additions & 1 deletion 2018-01-04.html
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,6 @@ <h1>Gibbs phenomenon and Cesàro mean</h1>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2023 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
1 change: 0 additions & 1 deletion 2018-02-27.html
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,6 @@ <h1>Spherical caps in cell polarization</h1>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2023 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
1 change: 0 additions & 1 deletion 2018-12-05.html
Original file line number Diff line number Diff line change
Expand Up @@ -228,7 +228,6 @@ <h2>An example in 1D</h2>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2024 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
3 changes: 1 addition & 2 deletions 2019-03-02.html
Original file line number Diff line number Diff line change
Expand Up @@ -127,8 +127,7 @@ <h2>Maurey's theorem</h2>
<p>In practice, we used Maurey's theorem to show that there exists
$$
\begin{align}
f_{\epsilon}(\boldsymbol{x}) = \, & \sum_{j=1}^{\lceil 1/\epsilon^2\rceil}b_j\big[\cos(\beta_j)\mathrm{Re}(K(\boldsymbol{w}_j\cdot\boldsymbol{x})) \\
& - \sin(\beta_j)\mathrm{Im}(K(\boldsymbol{w}_j\cdot\boldsymbol{x}))\big],
f_{\epsilon}(\boldsymbol{x}) = \sum_{j=1}^{\lceil 1/\epsilon^2\rceil}b_j\big[\cos(\beta_j)\mathrm{Re}(K(\boldsymbol{w}_j\cdot\boldsymbol{x})) - \sin(\beta_j)\mathrm{Im}(K(\boldsymbol{w}_j\cdot\boldsymbol{x}))\big],
\end{align}
$$
with \(\sum_{j=1}^{\lceil 1/\epsilon^2\rceil}\vert b_j\vert \leq C_F\) and \(\beta_j\in\mathbb{R}\), such that
Expand Down
1 change: 0 additions & 1 deletion 2020-05-19.html
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,6 @@ <h2>Results of our numerical experiments and Chebfun</h2>
<hr>
<h4>Blog posts about spectral methods</h4>

<p>2023 &nbsp; <a href="2023-12-15.html">Nonlocal vector calculus on the sphere</a></p>
<p>2020 &nbsp; <a href="2020-05-19.html">Exponential integrators for stiff PDEs</a></p>
<p>2018 &nbsp; <a href="2018-12-05.html">Computer-assisted proofs for PDEs</a></p>
<p>2018 &nbsp; <a href="2018-02-27.html">Spherical caps in cell polarization</a></p>
Expand Down
8 changes: 4 additions & 4 deletions 2020-11-17.html
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ <h2>Qubits</h2>
0 & -1
\end{pmatrix}.
$$
The eigenvalues are \(\pm\frac{\hbar}{2}\), while the eigenvectors are given by
The eigenvalues are \(\pm\frac{\hbar}{2}\), while the eigenvectors are given by
$$
\vert0\rangle=\begin{pmatrix}
1 \\
Expand Down Expand Up @@ -191,9 +191,9 @@ <h2>Tensor products</h2>
<p>The quantum states of two electrons, with respect to \(z\)-spin, may be described in the <a href='https://en.wikipedia.org/wiki/Tensor_product'>tensor product</a> basis as
$$
\begin{align}
\psi & = \psi_1\vert0\rangle\otimes\vert0\rangle
+ \psi_2\vert0\rangle\otimes\vert1\rangle \\[1.5pt]
& + \psi_3\vert1\rangle\otimes\vert0\rangle
\psi = \psi_1\vert0\rangle\otimes\vert0\rangle
+ \psi_2\vert0\rangle\otimes\vert1\rangle
+ \psi_3\vert1\rangle\otimes\vert0\rangle
+ \psi_4\vert1\rangle\otimes\vert1\rangle,
\end{align}
$$
Expand Down
Loading

0 comments on commit ce26bd5

Please sign in to comment.