generated from HSR-Stud/VorlageZF
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fbb0943
commit 003cf9b
Showing
19 changed files
with
377 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
54 changes: 54 additions & 0 deletions
54
include/Integraltransformationen/Integraltransformationen.tex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
\section{Integraltransformationen} | ||
|
||
\subsubsection*{Faltung} | ||
|
||
$$y(t) = (x_1 * x_2)(t) = \int \limits _{-infty} ^{infty} x_1(\tau) \cdot x_2(t-\tau) d\tau$$ | ||
\textbf{Eigenschaften:} | ||
\begin{itemize} | ||
\item Kommutativ ($f * g = g * f$) | ||
\item Assoziatiov ($(f*(g*h)) = ((f*g)*h)$) | ||
\item Distributiv ($f*(g+h)= f*g + f*h$) | ||
\end{itemize} | ||
|
||
\subsection{Fourier-Reihe und Transformation} | ||
\subsubsection*{Fourier-Reihe} | ||
\begin{tabular}{p{4.5cm}p{14.5cm}} | ||
Trigonometrische Form & | ||
$x(t) = \frac{u_0}{2} + \sum \limits _{n = 1} ^{\infty} u_n \cdot cos(2\pi n f_0 \cdot t) + v_n \cdot sin(2\pi n f_0 \cdot t) $ | ||
\newline $u_n = \frac{2}{T} \int \limits _{T} x(t) \cdot cos(2\pi n f_0 \cdot t)dt$ | ||
\newline $v_n = \frac{2}{T} \int \limits _{T} x(t) \cdot sin(2\pi n f_0 \cdot t)dt$ | ||
\\[20pt] | ||
Harmonische Form & | ||
$x(t) = r_0 + \sum \limits _{n = 1} ^{\infty} r_n \cdot cos(2\pi n f_0 \cdot t + \varpi_n)$ | ||
\newline $r_0 = \frac{u_0}{2} = \frac{1}{T} \int \limits _{T} x(t) dt $ | ||
$r_n > 0 = \sqrt{u_n^2 + v_n^2}$ | ||
$\varphi = arg(u_n - j \cdot v_n) $ | ||
\\ | ||
Komplexe Form & | ||
$x(t) = \sum \limits _{n= -\infty} ^{\infty} c_n \cdot e^{jn2\pi f_0 \cdot t}$ | ||
\newline $c_n =\overline{c_{-n}} = \frac{1}{T} \int \limits _{0} ^{T} x(t) \cdot e^{-j n 2 \pi f_0 \cdot t} dt$ | ||
\newline $ 2\pi f_0$ wird auch als \textbf{Kreisfrequenz} $\omega$ bezeichnet, $f_0$ = Frequenz des Grundsignals $x(t)$. | ||
\\[20pt] | ||
Umrechnung Koeffizienten & | ||
$c_n =\overline{c_{-n}} = \frac{a_n - jb_n}{2} (n = 0,1,2,3,..., b_0 =0)$ | ||
\newline $a_n = 2 \cdot Re(c_n); \; b_n = -2 \cdot Im(c_n) (n = 0,1,2,3,..., b_0 =0)$\\ | ||
\end{tabular} | ||
|
||
|
||
\subsubsection*{Fouriertransformation $\mathcal{F}(\omega)$} | ||
$$ X(\omega) = \mathcal{F}[x(t)] = \int \limits _{-\infty} ^{+\infty} x(t) \cdot e^{-j \omega t} dt $$ | ||
$$ x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2 \pi} \int \limits _{- \infty} ^{+ \infty} X(\omega) \cdot e^{j \omega t} d\omega$$ | ||
|
||
\subsubsection*{Komplex sin/cos} | ||
|
||
$$cos \varphi = \frac{e^{j\varphi}+ e^{-j\varphi}}{2}, \; sin \varphi = \frac{e^{j\varphi} - e^{-j\varphi}}{2j} $$ | ||
|
||
\subsection{Laplace-Transformation} | ||
TODO: %LAPLAAAAAAAAACEEEE | ||
|
||
\subsection{Hilbert-Transformation} | ||
Hilbert Transformation ist die Anwendung eines Quadraturfilters. \\ | ||
Definition im \textbf{Zeitbereich:} | ||
$$\hat{x}(t) = x(t) * \frac{1}{\pi t} = \frac{1}{\pi} \int \limits _{-\infty} ^{\infty} \frac{x(\tau)}{t-\tau} d\tau$$ | ||
Im \textbf{Frequenzbereich}: | ||
$$\hat{X}(\omega) = X(\omega) \cdot H(\omega) = -j \cdot sgn(\omega) \cdot X(\omega)$$ |
97 changes: 97 additions & 0 deletions
97
include/Kenngrössen von Signalen/Kenngrössen von Signalen.tex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
\section{Kenngrössen von Signalen} | ||
\begin{tabular}{p{6cm}p{12cm}} | ||
Energie & | ||
$W_n = \lim_{T \to \infty} \int \limits _{-T/2} ^{T/2} |f(t)|^2 dt$ \\ | ||
Leistung & | ||
$P_n = lim_{T \to \infty} \frac{1}{T} \int \limits _{-T/2} ^{T/2} |f(t)|^2 dt$ \\ | ||
*Linearer Mittelwert | ||
\newline \tiny(auch: $ \bar{x}, x_m$) & | ||
$X_0 = \frac{1}{T} \int \limits _{-T/2}^{T/2} x(t) dt $ \\ | ||
*Quadratischer Mittelwert & | ||
$X^2 = \frac{1}{T} \int \limits _{-T/2}^{T/2} x^2(t) dt$ \\ | ||
*Effektivwert \newline \tiny{("Quadratischer Mittelwert", RMS)} & | ||
$X^2 = \frac{1}{T} \int \limits _{-T/2}^{T/2} \sqrt{x^2(t)} dt $ \\ | ||
Mittelwert n. Ordnung \newline \tiny(nur Signale $\in \mathbb{R}$) & | ||
$X^n = \frac{1}{T} \int \limits _{-T/2} ^{T/2} x^n(t)dt$ \\ | ||
Varianz & | ||
$Var(x) = \sigma^2 = \frac{1}{T} \int \limits _{-T/2} ^{T/2} (x(t) - X_0)^2 dt$ \\ | ||
Standardabweichung & | ||
$\sigma = \sqrt{Var(x)} = \sqrt{X^2 - (X_0)^2}$ \\ | ||
\end{tabular} | ||
\textbf{\tiny *Hinweis: Formeln sind für Klasse 2a angegeben. \newline | ||
Für Klasse 2b mit: $\lim_{t \to \infty}\;$ für Klasse 1: ohne $\frac{1}{T}$ } | ||
|
||
\subsubsection*{Die Autokorrelationsfunktion (AKF)} | ||
Für Klasse 2a | ||
$$ \varphi_{xx}(\pm \tau) = \frac{1}{T} \int \limits _{-T/2} ^{T/2} x(t) \cdot x(t- \tau) dt | ||
= \frac{1}{T} \int \limits _{-T/2} ^{T/2} x(t + \tau) \cdot x(t)dt$$ | ||
\textbf{Eigenschaften:} | ||
\begin{itemize} | ||
\item $\varphi_{xx}(0) = X^2 = (X_0)^2 + \sigma^2$ \tiny Quadratischer Mittelwert \normalsize | ||
\item $\varphi_{xx}(\tau) = \varphi_{xx}(\tau \pm n \cdot T)$, mit $n \in \mathbb{N}$, | ||
AKF hat gleiche Periode $T$ wie $x(t)$ | ||
\item $\varphi_{xx}(\tau) = \varphi_{xx}(-\tau)$, AKF ist gerade Funktion | ||
\item $\varphi_{xx}(0) \geq \left|\varphi_{xx}(\tau)\right|$ | ||
\item $\varphi_{xx}(\tau) \geq (X_0)^2 - \sigma^2$ | ||
\item \textbf{Klasse 2b:} $\lim_{t \to \infty}$ voran; \textbf{Klasse 1:} $\lim_{t \to \infty}$ anstelle $\frac{1}{T}$ | ||
\end{itemize} | ||
|
||
\subsubsection*{Die Kreuzkorrelationsfunktion (KKF)} | ||
Für Klasse 2a: | ||
$$ (x \star y)(\tau) = \varphi_{x_1x_2}(\tau) = \frac{1}{T} \int \limits _{-T/2} ^{T/2} x_1(t) \cdot x_2(t- \tau) dt | ||
= \frac{1}{T} \int \limits _{-T/2} ^{T/2} x_1(t + \tau) \cdot x_2(t)dt$$ | ||
\textbf{Eigenschaften:} | ||
\begin{itemize} | ||
\item $\varphi_{x_1x_2}(\tau) = \varphi_{x_1x_2}(-\tau)$ | ||
\item ist \textbf{nicht} Kommutativ($(x \star y)(\tau) \neq (y \star x)(\tau)$) | ||
\item \textbf{Klasse 2b:} $\lim_{t \to \infty}$ voran; \textbf{Klasse 1:} $\lim_{t \to \infty}$ anstelle $\frac{1}{T}$ | ||
\end{itemize} | ||
|
||
|
||
\subsection{Vergleich Signalleistung / physikalische Leistung} | ||
Leistungsverhältnisse zweier Leistungen wird oft in dB, Dezibel angegeben. | ||
Bel steht für das Verhältnis zweier Werte im Zehnerlogarithmus. | ||
Aufgrund des d (=dezi) muss ein Faktor 10 verwendet werden. | ||
Werden anstelle Leistungen Effektivwerte genommen wird ein Faktor 20 benötigt. | ||
Bei Referenzwerten $P_0$ ist dieser für $P_x$ resp $x_{rms}$ einzusetzen. | ||
|
||
$$10 \cdot \log_{10} (\frac{P_y}{P_x}) = | ||
10 \cdot \log_{10}(\frac{(y_{rms})^2}{(x_{rms})^2}) = | ||
20 \cdot log_{10}(\frac{y_{rms}}{x_{rms}}) = k[\textrm{dB}]$$ | ||
daraus folgt: | ||
$$P_y = P_x \cdot 10^{\frac{k}{10}} \; P_x = \frac{P_y}{10^{\frac{k}{10}}}$$ | ||
bzw: | ||
$$y_{rms} = x_{rms} \cdot 10^{\frac{k}{20}} \; x_{rms} = \frac{y_{rms}}{10^{\frac{k}{20}}}$$ | ||
|
||
\subsection{Rauschen} | ||
|
||
effektive thermische Rauschleistung: $P_r = k \cdot T \cdot \Delta f $ \\ | ||
daraus folgt: $U_r = \sqrt{4\cdot k \cdot T \cdot \Delta f \cdot R} $\\ | ||
wobei $k = 1.380662\cdot 10^{-23} \frac{J}{K}$ = Boltzmann-Konstante\\ | ||
|
||
Signal-Rausch-Verhältnis: $a_r = 10 \cdot log_{10}(\frac{P_s}{P_r}) = 20 \cdot log_{10}(\frac{U_s}{U_r})$ | ||
Rauschzahl: $F = \frac{P_{s_{in}}}{P_{r_{in}}}\cdot \frac{P_{r_{in}}}{P_{s_{out}}} $ | ||
logarithmisch: $A_F = 10 \cdot log_{10}(F) = a_{r_{in}} - a_{r_{out}}$ | ||
|
||
\subsection{Amplitudenanalyse von Signalen} | ||
|
||
\textbf{Amplitudendichte (WSK-Dichte)} $p(a) = lim_{da \to 0} \frac{\sum t (a-\frac{da}{2} < x(t) \leq a + \frac{da}{2})}{T \cdot da}= \frac{1}{T} \cdot \frac{dt}{da}$ | ||
|
||
\subsubsection*{Mittelwerte} | ||
|
||
\textbf{Linear:}$X_0 = \int \limits _{-\infty} ^{\infty} a \cdot p(a) da$ | ||
\textbf{N-te Ordnung:}$X^n = \int \limits _{-\infty} ^{\infty} a^n \cdot p(a) da$ | ||
Gauss verteilung \textbf{für Stochastische Signale} $p(a) = N(\mu, \sigma) = \frac{1}{\sigma \cdot \sqrt{2\pi}}\cdot e^{\frac{-(a-\mu)^2}{2\sigma^2}} $ | ||
wobei: $\mu$ = Linearer Mittelwert ($X_0$) und $\sigma$ = Varianz | ||
|
||
\subsubsection*{Faltung zweier Amplitudendichten} | ||
|
||
$p(a) = \int \limits _{-\infty} ^{\infty} p_2(x) \cdot p_1(a-x)dx$ | ||
Note: werden 2 Normalverteilungen gefaltet, entsteht eine Normalverteilung. | ||
|
||
\subsubsection*{Weiter Funktionen} | ||
|
||
|
||
Q-Funktion: $Q(\xi) = \frac{1}{\sqrt{2\pi}}\int \limits _{\xi} ^{\infty} e^{-\frac{y^2}{2}}d\xi$ | ||
Fehlerfunktion $erf(\xi) = \frac{2}{\sqrt{\pi}} \int \limits _{0} ^{\xi} e^{-y^2} dy$ | ||
komplementäre Fehlerfunktion $erfc(\xi) = \frac{2}{\sqrt{\pi}} \int \limits _{\xi} ^{\infty} e^{-y^2} dy $ |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.