Skip to content

Convinience helpers for plotting optimization stuff with PGFPlot(X).

Notifications You must be signed in to change notification settings

GillesBareilles/PlotsOptim.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PlotsOptim.jl

Build plots with PGFPlots(X.jl) for all your optimal algorithms.

This repository is a work in progress. Check out the docs for more information.

Usage

Two dimensional plots

Draw points, lines, sets, arrows in the plane.

xmin, xmax = -2, 2
ymin, ymax = -1.5, 1.5

axisbounds = (;xmin, xmax, ymin, ymax)
axis = baseaxis(axisbounds)

add_arrow!(axis, [-1, -1], [0, 1])
add_surface!(axis, [[0, 0], [1, 0], [0.5, 1]])

add_point!(axis, [-1, 1]; name = "y")
add_text!(axis, [-1, -1], "\nabla f(x)")

add_curve!()
add_segment!()
add_contour!()

add_level!()
add_iterates!()

add_legend!()

Suboptimality-like plots

Plot one quantity (e.g. suboptimality) versus another (e.g. iterations). Check the docstring of plot_curves for options.

fig = plot_curves(
    Dict(
        L"f(x_k) - f^\star" => (1:30, [1/k for k in 1:30]),
        L"f(x_k)" => (1:30, [1/k + 3.0 for k in 1:30]),
    ), get_abscisses, get_ordinates;
    xlabel=raw"iteration $k$", ylabel=raw"",
)

Save several plots in one pdf file.

axis = []
push!(axis, plot_curves(
    Dict(
        L"f(x_k) - f^\star" => (1:30, [1/k for k in 1:30]),
    ), get_abscisses, get_ordinates;
    xlabel=raw"iteration $k$", ylabel=raw"",
))
push!(axis, plot_curves(
    Dict(
        L"f(x_k)" => (1:30, [1/k + 3.0 for k in 1:30]),
    ), get_abscisses, get_ordinates;
    xlabel=raw"iteration $k$", ylabel=raw"",
    ymode="normal",
))
fig = TikzDocument(axis...)

Save the figure

savefig(fig, "nullpoints_convex"; FIGFOLDER = ".", include_preamble = false)

Checking derivatives using Taylor developments

using PlotsOptim
using LinearAlgebra

f(x) = norm(x, 2)^2

x = [2, 2]
d1 = [4, 4]
d2 = [-4, 4]

model_to_functions = OrderedDict{String, Function}(
    "f tangent" => t -> abs( f(x+t*d1) - f(x) ),
    "f rand" => t -> abs( f(x+t*d2) - f(x) ),
)

model_to_curves = build_logcurves(model_to_functions)

## computing slopes
for (model, (xs, ys)) in model_to_curves
    @show model
    xsclean, ysclean = remove_small_functionvals(xs, ys)
    β, residual= build_affinemodel(xsclean, ysclean)
    @show β, residual

    push!(model_to_functions, "$model reg" => t -> exp(β[2] + β[1]*log(t)))

    @show check_curveslope(curve, 2)
end
plot_taylordev(build_logcurves(model_to_functions))
plot_taylordev(model_to_functions)

Drawings

Performance profiles

toydata = PlotsOptim.perfprofile_toydata()
plot_perfprofile(toydata, "My performance profile")

About

Convinience helpers for plotting optimization stuff with PGFPlot(X).

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages