Skip to content

GeneralElectric/CellDistinguisher

Repository files navigation

# README
# CellDistinguisher
# Tested/run on Linux
#
# Generic input
# exprLinear: a matrix of linear expression values with probes sets (or genes) as rows and samples as columns.
# genesymb: a vector of gene names associated with the probe sets or NULL if not available.
#
# To run, get the software and your data as described below.  Start R at the command line, then copy-paste the commands.

#############################
# Run CellDistinguisher using a local text file/matrix with linear gene expression data
# Gene expression data from pooled normal tissues was obtained from the RNA-Seq Atlas (http://medicalgenomics.org/rna_seq_atlas).
# Mixed samples were generated by combining the expression values of known genes from
# five tissues: adipose, colon, heart, hypothalamus, kidney.
#
# Input provided to run CellDistinguisher: expression_values.mixed_samples.tsv
# Two additional files are provided for comparing them to the results of the deconvolution
# based on distinguishers:
# 1. Known composition of the mixed samples: known_fractions.tsv
# 2. Known expression signatures of the pure tissues: expression_signatures.pure_tissues.tsv
#############################
R
## Get the software.  You will need the gtools and Matrix packages.
## You may also want the CellMix and GEOquery packages.  Note that if
## the following approach using remote access does not work for
## installing the CellDistinguisher package, you can download the
## package directly from
## https://github.com/GeneralElectric/CellDistinguisher/archive/master.tar.gz
## and then install it with any approach that uses local files.
{
    if (!suppressWarnings(require("gtools", quietly=TRUE))) {
        install.packages("gtools")
        library("gtools")
    }
    if (!suppressWarnings(require("Matrix", quietly=TRUE))) {
        install.packages("Matrix")
        library("Matrix")
    }
    if (!suppressWarnings(require("CellDistinguisher", quietly=TRUE))) {
        if (!suppressWarnings(require("devtools", quietly=TRUE))) {
           install.packages("devtools")
           library("devtools")
        }
        install_github("GeneralElectric/CellDistinguisher")
        library("CellDistinguisher")
    }
}

# Read the data that contains gene symbols instead of probe ID-s in first columns
inDataFile <- system.file("extdata", "expression_values.mixed_samples.tsv", package = "CellDistinguisher")
inData <- as.matrix(read.table(inDataFile, sep="\t", header = TRUE, row.names = 1))

# Remove lines with all 0 elements
# Expression data is often stored as log values. In such cases, make sure it is transformed back to linear.
exprLinear <- inData[ rowSums(inData==0) != ncol(inData), ]

# Compute the distinguishers.  With the below call we are asking for 1-100 distinguishers for each of 5 cell classes.
# We are filtering out probe sets that have expression values above 99.9 percentile.
# We are filtering out probe sets for which the second largest expression value among the heterogeneous samples
# is less than or equal to 0.333 of the first largest.
distinguishers <- gecd_CellDistinguisher(exprLinear, genesymb=NULL, numCellClasses=5, minDistinguisherAlternatives=1, maxDistinguisherAlternatives=100, minAlternativesLengthsNormalized=0.5, expressionQuantileForFilter=0.999, expressionConcentrationRatio=0.333, verbose=0)

# Run deconvolution using these distinguishers
deconvolution <- gecd_DeconvolutionByDistinguishers(exprLinear, distinguishers$bestDistinguishers, nonNegativeOnly = TRUE, convexSolution = TRUE, verbose = 0)

# Alternatively, one of the deconvolution algorithms of CellMix (ssKL or ssFrobenius) can be used.  Note that you must install the CellMix package before running these commands.
library(CellMix)
deconvolutionSSKL <- gecd_DeconvolutionCellMix(exprLinear, distinguishers$bestDistinguishers, method="ssKL", maxIter=5)

# Get the sample composition: samples as columns, cell types as rows
# For a large number of samples, it is easier to use the transposed form of the sample composition matrix
sampleCompositions <- t(deconvolution$sampleCompositions)

# Expression signatures of pure cell types/subtypes/activities
celltypeSignatures <- deconvolution$cellSubclassSignatures

# Output #1 - list of distinguisher genes for each cell class/type
write.table(distinguishers$bestDistinguishers, file="distinguishers.tsv",sep="\t", col.names = F, row.names = F, quote=FALSE)

# Output #2 - sample composition: the fraction of each of the 5 cell types in every sample
write.table(sampleCompositions, file="sample_composition.tsv",sep="\t", col.names = T, row.names = T, quote=FALSE)

# Output #3 - computed expression signatures of pure cell types
write.table(round(celltypeSignatures,4),file="celltype_signatures.tsv",sep="\t", col.names = NA, row.names = T, quote=FALSE)

###############################################################################
# Run CellDistinguisher using a GEO accession number to download the study data
###############################################################################

######################################################################
### GSE19830
### http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19830
###
### Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry
### NM, Hastie T, Sarwal MM, Davis MM, Butte AJ. Cell type-specific
### gene expression differences in complex tissues. Nat Methods. 2010
### Apr;7(4):287-9. doi: 10.1038/nmeth.1439. Epub 2010 Mar 7. PubMed
### PMID: 20208531; PubMed Central PMCID: PMC3699332.
###
### Title: Expression data from pure/mixed brain, liver and lung to
### test feasability and sensitivity of statistical deconvolution
###
### Organism: Rattus norvegicus
### Experiment type: Expression profiling by array
###
### Tissue samples from the brain, liver and lung of a single rat were
### analyzed using expression arrays (Affymetrix) in triplicate.
### Homogenates of those three tissues were then mixed
### together at the cRNA level and the gene expression in each
### mixed sample was measured the same way.

R
## Note that you must install the GEOquery package before running these commands.
library(GEOquery)
options(download.file.method='wget')
options(download.file.method.GEOquery='wget')
GSE19830GEO  <- getGEO("GSE19830", GSEMatrix=FALSE)
GSE19830Data <- gecd_DataLoader$GSEGeneric(GSE19830GEO, retrievedAs="log2", genesymbColname="Gene Symbol")

## Keep only first of several alternative gene symbols that are separated by "//"
GSE19830Data[[1]]$genesymb <- sub("(.*?) //.*", "\\1", GSE19830Data[[1]]$genesymb)

GSE19830ExprLinear <- GSE19830Data[[1]]$exprLinear
GSE19830genesymb   <- GSE19830Data[[1]]$genesymb
GSE19830SampleInfo <- GSE19830Data[[1]]$sampleInfo
GSE19830ProbesetInfo <- GSE19830Data[[1]]$probesetInfo

save(GSE19830ExprLinear, GSE19830genesymb, GSE19830SampleInfo, GSE19830ProbesetInfo, file="GSE19830.RData")

# Next time just load the RData file

load("GSE19830.RData")

exprLinear = GSE19830ExprLinear
exprLinearClasses = NULL
sampleInfo = GSE19830SampleInfo
probesetInfo = GSE19830ProbesetInfo
genesymb = GSE19830genesymb

MyDistinguishers <- gecd_CellDistinguisher(exprLinear[,-(1:9)], genesymb=genesymb, numCellClasses=3, probesWithGenesOnly=TRUE, minDistinguisherAlternatives=1, maxDistinguisherAlternatives=100, minAlternativesLengthsNormalized=0.5, expressionQuantileForFilter=0.999, expressionConcentrationRatio=0.333, verbose=0)

head(MyDistinguishers$bestDistinguishersGeneNames)

# Output #1 - list of distinguisher genes for each cell class/type
write.table(MyDistinguishers$bestDistinguishersGeneNames, file="distinguishers.tsv",sep="\t", col.names = F, row.names = F, quote=FALSE)

## Perform deconvolution with default method
MyDeconvolution <- gecd_DeconvolutionByDistinguishers(exprLinear, MyDistinguishers$bestDistinguishers, nonNegativeOnly=TRUE, convexSolution=TRUE)
sampleCompositions <- MyDeconvolution$sampleCompositions

## Transpose the matrix to have the cell types as columns, samples as rows
sampleCompositions <- t(sampleCompositions)

## Cell/tissue types are labeled with the top distinguisher gene
colnames(sampleCompositions) <- MyDistinguishers$bestDistinguishersGeneNames[1,]

# Output #2: Sample composition saved into a tsv file
write.table(t(round(sampleCompositions, 3)), col.names= T, file="rat_tissue_sample_compositions_top50dist.txt", sep="\t", quote = F)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages