Skip to content
/ depthai Public
forked from luxonis/depthai

DepthAI Python API utilities, examples, and tutorials.

License

Notifications You must be signed in to change notification settings

GNejc/depthai

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DepthAI API Demo Program

This repo contains demo application, which can load different networks, create pipelines, record video, etc.

Click on the GIF below to see a full example run depthai demo

Documentation is available at https://docs.luxonis.com/.

Python modules (Dependencies)

DepthAI Demo requires numpy, opencv-python and depthai. To get the versions of these packages you need for the program, use pip: (Make sure pip is upgraded: python3 -m pip install -U pip)

python3 install_requirements.py

Examples

python3 depthai_demo.py - RGB & CNN inference example

python3 depthai_demo.py -vid <path_to_video_or_yt_link> - CNN inference on video example

python3 depthai_demo.py -cnn person-detection-retail-0013 - Run person-detection-retail-0013 model from resources/nn directory

python3 depthai_demo.py -cnn tiny-yolo-v3 -sh 8 - Run tiny-yolo-v3 model from resources/nn directory and compile for 8 shaves

Usage

$ depthai_demo.py --help

usage: depthai_demo.py [-h] [-cam {left,right,color}] [-vid VIDEO] [-dd] [-dnn] [-cnnp CNNPATH] [-cnn CNNMODEL] [-sh SHAVES] [-cnnsize CNNINPUTSIZE]
                       [-rgbr {1080,2160,3040}] [-rgbf RGBFPS] [-dct DISPARITYCONFIDENCETHRESHOLD] [-lrct LRCTHRESHOLD] [-sig SIGMA] [-med {0,3,5,7}] [-lrc] [-ext] [-sub]
                       [-dff] [-scale SCALE [SCALE ...]]
                       [-cm {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}]
                       [-maxd MAXDEPTH] [-mind MINDEPTH] [-sbb] [-sbbsf SBBSCALEFACTOR]
                       [-s {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...]]
                       [--report {temp,cpu,memory} [{temp,cpu,memory} ...]] [--reportFile REPORTFILE] [-sync] [-monor {400,720,800}] [-monof MONOFPS] [-cb CALLBACK]
                       [--openvinoVersion {2020_3,2020_4,2021_1,2021_2,2021_3,2021_4}] [--count COUNTLABEL] [-dev DEVICEID] [-bandw {auto,low,high}] [-usbs {usb2,usb3}]
                       [-enc ENCODE [ENCODE ...]] [-encout ENCODEOUTPUT] [-xls XLINKCHUNKSIZE] [-camo CAMERAORIENTATION [CAMERAORIENTATION ...]] [--cameraControlls] 
                       [--cameraExposure CAMERAEXPOSURE] [--cameraSensitivity CAMERASENSITIVITY] [--cameraSaturation CAMERASATURATION] [--cameraContrast CAMERACONTRAST]
                       [--cameraBrightness CAMERABRIGHTNESS] [--cameraSharpness CAMERASHARPNESS]


optional arguments:
  -h, --help            show this help message and exit
  -cam {left,right,color}, --camera {left,right,color}
                        Use one of DepthAI cameras for inference (conflicts with -vid)
  -vid VIDEO, --video VIDEO
                        Path to video file (or YouTube link) to be used for inference (conflicts with -cam)
  -dd, --disableDepth   Disable depth information
  -dnn, --disableNeuralNetwork
                        Disable neural network inference
  -cnnp CNNPATH, --cnnPath CNNPATH
                        Path to cnn model directory to be run
  -cnn CNNMODEL, --cnnModel CNNMODEL
                        Cnn model to run on DepthAI
  -sh SHAVES, --shaves SHAVES
                        Number of MyriadX SHAVEs to use for neural network blob compilation
  -cnnsize CNNINPUTSIZE, --cnnInputSize CNNINPUTSIZE
                        Neural network input dimensions, in "WxH" format, e.g. "544x320"
  -rgbr {1080,2160,3040}, --rgbResolution {1080,2160,3040}
                        RGB cam res height: (1920x)1080, (3840x)2160 or (4056x)3040. Default: 1080
  -rgbf RGBFPS, --rgbFps RGBFPS
                        RGB cam fps: max 118.0 for H:1080, max 42.0 for H:2160. Default: 30.0
  -dct DISPARITYCONFIDENCETHRESHOLD, --disparityConfidenceThreshold DISPARITYCONFIDENCETHRESHOLD
                        Disparity confidence threshold, used for depth measurement. Default: 245
  -lrct LRCTHRESHOLD, --lrcThreshold LRCTHRESHOLD
                        Left right check threshold, used for depth measurement. Default: 4
  -sig SIGMA, --sigma SIGMA
                        Sigma value for Bilateral Filter applied on depth. Default: 0
  -med {0,3,5,7}, --stereoMedianSize {0,3,5,7}
                        Disparity / depth median filter kernel size (N x N) . 0 = filtering disabled. Default: 7
  -lrc, --stereoLrCheck
                        Enable stereo 'Left-Right check' feature.
  -ext, --extendedDisparity
                        Enable stereo 'Extended Disparity' feature.
  -sub, --subpixel      Enable stereo 'Subpixel' feature.
  -dff, --disableFullFovNn
                        Disable full RGB FOV for NN, keeping the nn aspect ratio
  -scale SCALE [SCALE ...], --scale SCALE [SCALE ...]
                        Define which preview windows to scale (grow/shrink). If scale_factor is not provided, it will default to 0.5 
                        Format: preview_name or preview_name,scale_factor 
                        Example: -scale color 
                        Example: -scale color,0.7 right,2 left,2
  -cm {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}, --colorMap {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}
                        Change color map used to apply colors to depth/disparity frames. Default: JET
  -maxd MAXDEPTH, --maxDepth MAXDEPTH
                        Maximum depth distance for spatial coordinates in mm. Default: 10000
  -mind MINDEPTH, --minDepth MINDEPTH
                        Minimum depth distance for spatial coordinates in mm. Default: 100
  -sbb, --spatialBoundingBox
                        Display spatial bounding box (ROI) when displaying spatial information. The Z coordinate get's calculated from the ROI (average)
  -sbbsf SBBSCALEFACTOR, --sbbScaleFactor SBBSCALEFACTOR
                        Spatial bounding box scale factor. Sometimes lower scale factor can give better depth (Z) result. Default: 0.3
  -s {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...], --show {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...]
                        Choose which previews to show. Default: []
  --report {temp,cpu,memory} [{temp,cpu,memory} ...]
                        Display device utilization data
  --reportFile REPORTFILE
                        Save report data to specified target file in CSV format
  -sync, --sync         Enable NN/camera synchronization. If enabled, camera source will be from the NN's passthrough attribute
  -monor {400,720,800}, --monoResolution {400,720,800}
                        Mono cam res height: (1280x)720, (1280x)800 or (640x)400. Default: 400
  -monof MONOFPS, --monoFps MONOFPS
                        Mono cam fps: max 60.0 for H:720 or H:800, max 120.0 for H:400. Default: 30.0
  -cb CALLBACK, --callback CALLBACK
                        Path to callbacks file to be used. Default: <project_root>/callbacks.py
  --openvinoVersion {2020_3,2020_4,2021_1,2021_2,2021_3,2021_4}
                        Specify which OpenVINO version to use in the pipeline
  --count COUNTLABEL    Count and display the number of specified objects on the frame. You can enter either the name of the object or its label id (number).
  -dev DEVICEID, --deviceId DEVICEID
                        DepthAI MX id of the device to connect to. Use the word 'list' to show all devices and exit.
  -bandw {auto,low,high}, --bandwidth {auto,low,high}
                        Force bandwidth mode. 
                        If set to "high", the output streams will stay uncompressed
                        If set to "low", the output streams will be MJPEG-encoded
                        If set to "auto" (default), the optimal bandwidth will be selected based on your connection type and speed
  -usbs {usb2,usb3}, --usbSpeed {usb2,usb3}
                        Force USB communication speed. Default: usb3
  -enc ENCODE [ENCODE ...], --encode ENCODE [ENCODE ...]
                        Define which cameras to encode (record) 
                        Format: cameraName or cameraName,encFps 
                        Example: -enc left color 
                        Example: -enc color right,10 left,10
  -encout ENCODEOUTPUT, --encodeOutput ENCODEOUTPUT
                        Path to directory where to store encoded files. Default: <project_root>
  -xls XLINKCHUNKSIZE, --xlinkChunkSize XLINKCHUNKSIZE
                        Specify XLink chunk size
  -camo CAMERAORIENTATION [CAMERAORIENTATION ...], --cameraOrientation CAMERAORIENTATION [CAMERAORIENTATION ...]
                        Define cameras orientation (available: AUTO, NORMAL, HORIZONTAL_MIRROR, VERTICAL_FLIP, ROTATE_180_DEG) 
                        Format: camera_name,camera_orientation 
                        Example: -camo color,ROTATE_180_DEG right,ROTATE_180_DEG left,ROTATE_180_DEG
  --cameraControlls      Show camera configuration options in GUI and controll them using keyboard
  --cameraExposure CAMERAEXPOSURE
                        Specify camera saturation
  --cameraSensitivity CAMERASENSITIVITY
                        Specify camera sensitivity
  --cameraSaturation CAMERASATURATION
                        Specify image saturation
  --cameraContrast CAMERACONTRAST
                        Specify image contrast
  --cameraBrightness CAMERABRIGHTNESS
                        Specify image brightness
  --cameraSharpness CAMERASHARPNESS
                        Specify image sharpness

Conversion of existing trained models into Intel Movidius binary format

OpenVINO toolkit contains components which allow conversion of existing supported trained Caffe and Tensorflow models into Intel Movidius binary format through the Intermediate Representation (IR) format.

Example of the conversion:

  1. First the model_optimizer tool will convert the model to IR format:

    cd <path-to-openvino-folder>/deployment_tools/model_optimizer
    python3 mo.py --model_name ResNet50 --output_dir ResNet50_IR_FP16 --framework tf --data_type FP16 --input_model inference_graph.pb
    
    • The command will produce the following files in the ResNet50_IR_FP16 directory:
      • ResNet50.bin - weights file;
      • ResNet50.xml - execution graph for the network;
      • ResNet50.mapping - mapping between layers in original public/custom model and layers within IR.
  2. The weights (.bin) and graph (.xml) files produced above (or from the Intel Model Zoo) will be required for building a blob file, with the help of the myriad_compile tool. When producing blobs, the following constraints must be applied:

    CMX-SLICES = 4
    SHAVES = 4
    INPUT-FORMATS = 8
    OUTPUT-FORMATS = FP16/FP32 (host code for meta frame display should be updated accordingly)
    

    Example of command execution:

    <path-to-openvino-folder>/deployment_tools/inference_engine/lib/intel64/myriad_compile -m ./ResNet50.xml -o ResNet50.blob -ip U8 -VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4
    

Usage statistics

By default, the demo script will collect anonymous usage statistics during runtime. These include:

  • Device-specific information (like mxid, connected cameras, device state and connection type)
  • Environment-specific information (like OS type, python version, package versions)

We gather this data to better understand what environemnts are our users using, as well as assist better in support questions.

All of the data we collect is anonymous and you can disable it at any time. To do so, click on the "Misc" tab and disable sending the statistics.

Reporting issues

We are actively developing the DepthAI framework, and it's crucial for us to know what kind of problems you are facing.
If you run into a problem, please follow the steps below and email [email protected]:

  1. Run log_system_information.sh and share the output from (log_system_information.txt).
  2. Take a photo of a device you are using (or provide us a device model)
  3. Describe the expected results;
  4. Describe the actual running results (what you see after started your script with DepthAI)
  5. How you are using the DepthAI python API (code snippet, for example)
  6. Console output

About

DepthAI Python API utilities, examples, and tutorials.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 84.7%
  • QML 12.2%
  • Inno Setup 1.6%
  • Other 1.5%