Skip to content

Commit

Permalink
fx
Browse files Browse the repository at this point in the history
  • Loading branch information
SnO2WMaN committed Jun 6, 2024
1 parent d621c3d commit 87105dd
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 0 deletions.
6 changes: 6 additions & 0 deletions Logic/Modal/LogicSymbol.lean
Original file line number Diff line number Diff line change
Expand Up @@ -184,6 +184,12 @@ prefix:74 "□" => box
abbrev dia : F → F := mop false
prefix:74 "◇" => dia

abbrev boxdot (p : F) : F := p ⋏ □p
prefix:74 "⊡" => boxdot

-- abbrev diadot (p : F) : F := p ⋏ ◇p
-- prefix:74 "⟐" => diadot

lemma duality' {p : F} : (◇p) = ~(□(~p)) := by apply duality

abbrev multibox (n : ℕ) : F → F := (mop true)^[n]
Expand Down
17 changes: 17 additions & 0 deletions Logic/Modal/Standard/HilbertStyle.lean
Original file line number Diff line number Diff line change
Expand Up @@ -270,6 +270,23 @@ def collect_dia_or' (h : 𝓢 ⊢ ◇p ⋎ ◇q) : 𝓢 ⊢ ◇(p ⋎ q) := coll
-- def distributeDiaAnd' (h : 𝓢 ⊢ ◇(p ⋏ q)) : 𝓢 ⊢ ◇p ⋏ ◇q := distributeDiaAnd ⨀ h
lemma distribute_dia_and'! (h : 𝓢 ⊢! ◇(p ⋏ q)) : 𝓢 ⊢! ◇p ⋏ ◇q := distribute_dia_and! ⨀ h

def boxdotAxiomK : 𝓢 ⊢ ⊡(p ⟶ q) ⟶ (⊡p ⟶ ⊡q) := by
simp [StandardModalLogicalConnective.boxdot]
apply deduct';
apply deduct;
have d : [p ⋏ □p, (p ⟶ q) ⋏ □(p ⟶ q)] ⊢[𝓢] (p ⟶ q) ⋏ □(p ⟶ q) := FiniteContext.byAxm;
exact conj₃' ((conj₁' d) ⨀ (conj₁' (q := □p) (FiniteContext.byAxm))) <|
(axiomK' $ conj₂' d) ⨀ (conj₂' (p := p) (FiniteContext.byAxm));
@[simp] lemma boxdot_axiomK! : 𝓢 ⊢! ⊡(p ⟶ q) ⟶ (⊡p ⟶ ⊡q) := ⟨boxdotAxiomK⟩

def boxdotAxiomT : 𝓢 ⊢ ⊡p ⟶ p := by
apply deduct';
have : [⊡p] ⊢[𝓢] p ⋏ □p := FiniteContext.byAxm;
exact conj₁' (by assumption);
@[simp] lemma boxdot_axiomT! : 𝓢 ⊢! ⊡p ⟶ p := ⟨boxdotAxiomT⟩

def boxdotNec (d : 𝓢 ⊢ p) : 𝓢 ⊢ ⊡p := conj₃' d (nec d)
lemma boxdot_nec! (d : 𝓢 ⊢! p) : 𝓢 ⊢! ⊡p := ⟨boxdotNec d.some⟩

def axiomT [HasAxiomT 𝓢] : 𝓢 ⊢ □p ⟶ p := HasAxiomT.T _
@[simp] lemma axiomT! [HasAxiomT 𝓢] : 𝓢 ⊢! □p ⟶ p := ⟨axiomT⟩
Expand Down

0 comments on commit 87105dd

Please sign in to comment.