-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import Logic.FirstOrder.Arith.Representation | ||
import Logic.FirstOrder.Computability.Calculus | ||
|
||
namespace LO | ||
|
||
namespace FirstOrder | ||
|
||
namespace Arith | ||
|
||
namespace Diagonal | ||
|
||
variable {T : Theory ℒₒᵣ} [EqTheory T] [PAminus T] [DecidablePred T] [SigmaOneSound T] [Theory.Computable T] | ||
|
||
open Encodable Subformula | ||
|
||
noncomputable def fsbs : Subsentence ℒₒᵣ 3 := | ||
graphTotal₂ (fun (σ π : Subsentence ℒₒᵣ 1) => σ/[(⸢π⸣ : Subterm ℒₒᵣ Empty 0)]) | ||
|
||
lemma sbs_spec (σ π : Subsentence ℒₒᵣ 1) : | ||
T ⊢! ∀' (fsbs/[#0, ⸢σ⸣, ⸢π⸣] ⟷ “#0 = !!⸢σ/[(⸢π⸣ : Subterm ℒₒᵣ Empty 0)]⸣”) := | ||
representation_computable₂ T (f := fun (σ π : Subsentence ℒₒᵣ 1) => σ/[(⸢π⸣ : Subterm ℒₒᵣ Empty 0)]) | ||
(by sorry) σ π | ||
|
||
noncomputable def diag (θ : Subsentence ℒₒᵣ 1) : Subsentence ℒₒᵣ 1 := | ||
∀' (fsbs/[#0, #1, #1] ⟶ θ/[#0]) | ||
|
||
noncomputable def fixpoint (θ : Subsentence ℒₒᵣ 1) : Sentence ℒₒᵣ := | ||
∀' (fsbs/[#0, ⸢diag θ⸣, ⸢diag θ⸣] ⟶ θ/[#0]) | ||
|
||
lemma substs_diag (θ σ : Subsentence ℒₒᵣ 1) : | ||
(diag θ)/[(⸢σ⸣ : Subterm ℒₒᵣ Empty 0)] = ∀' (fsbs/[#0, ⸢σ⸣, ⸢σ⸣] ⟶ θ/[#0]) := by | ||
simp[diag, Rew.q_substs, ←Rew.hom_comp_app, Rew.substs_comp_substs] | ||
|
||
theorem fixpoint_spec (θ : Subsentence ℒₒᵣ 1) : | ||
T ⊢! fixpoint θ ⟷ θ/[⸢fixpoint θ⸣] := | ||
Complete.consequence_iff_provable.mp (consequence_of _ _ (fun M _ _ _ _ _ => by | ||
haveI : Theory.Mod M (Theory.PAminus ℒₒᵣ) := | ||
Theory.Mod.of_subtheory (T₁ := T) M (Semantics.ofSystemSubtheory _ _) | ||
have hfsbs : ∀ σ π : Subsentence ℒₒᵣ 1, ∀ z, | ||
PVal! M ![z, encode σ, encode π] fsbs ↔ z = encode (σ/[(⸢π⸣ : Subterm ℒₒᵣ Empty 0)]) := by | ||
simpa[models_iff, Subformula.eval_substs, Matrix.comp_vecCons', Matrix.constant_eq_singleton] using | ||
fun σ π => consequence_iff'.mp (Sound.sound' (sbs_spec (T := T) σ π)) M | ||
simp[models_iff, Subformula.eval_substs, Matrix.comp_vecCons'] | ||
suffices : PVal! M ![] (fixpoint θ) ↔ PVal! M ![encode (fixpoint θ)] θ | ||
· simpa[Matrix.constant_eq_singleton] using this | ||
calc | ||
PVal! M ![] (fixpoint θ) | ||
↔ ∀ z, PVal! M ![z, encode (diag θ), encode (diag θ)] fsbs → PVal! M ![z] θ := by simp[fixpoint, Subformula.eval_rew, | ||
Function.comp, Matrix.comp_vecCons', | ||
Matrix.constant_eq_vec₂, | ||
Matrix.constant_eq_singleton] | ||
_ ↔ PVal! M ![encode $ (diag θ)/[(⸢diag θ⸣ : Subterm ℒₒᵣ Empty 0)]] θ := by simp[hfsbs] | ||
_ ↔ PVal! M ![encode $ ∀' (fsbs/[#0, ⸢diag θ⸣, ⸢diag θ⸣] ⟶ θ/[#0])] θ := by rw[substs_diag] | ||
_ ↔ PVal! M ![encode (fixpoint θ)] θ := by rfl)) | ||
|
||
end Diagonal | ||
|
||
|
||
end Arith | ||
|
||
end FirstOrder | ||
|
||
end LO |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters