Skip to content

Flashkong/Source-Free-Object-Detection-by-Learning-to-Overlook-Domain-Style

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Source-Free Object Detection by Learning to Overlook Domain Style (CVPR 2022 ORAL Paper)

This is the offical implementation of our CVPR 2022 work 'Source-Free Object Detection by Learning to Overlook Domain Style'. We aim to solve the source-free object detetion problem from a novel perspective of overlooking target domain style. The original paper can be found here.

Our paper has been selected for an ORAL presentation, the presentation video can be found here.

If you find it helpful for your research, please consider citing:

@InProceedings{Li_2022_CVPR,
    author    = {Li, Shuaifeng and Ye, Mao and Zhu, Xiatian and Zhou, Lihua and Xiong, Lin},
    title     = {Source-Free Object Detection by Learning To Overlook Domain Style},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022},
    pages     = {8014-8023}
}

Supplement

We use the standard Faster R-CNN as the teacher and student. For PASCAL VOC to Clipart and PASCAL VOC to Watercolor, we use Resnet101 as our backbone. For Cityscapes to Foggy-Cityscapes and KITTI to Cityscape, we use VGG16 (without batchnorm) as our backbone.

Note that for the Foggy-Cityscapes dataset, we use the foggy level of 0.02. For Clipart dataset, we use all 1K images for both training and testing.

Requirements

  • Python 2.7.12
  • PyTorch 1.0.0
  • torchvision 0.2.2

Please install other requirements by pip install -r requirements.txt

Style enhancement module

First, the style enhancement module needs to be trained.

Prepare Data

Run the following commands to copy target domain training images. Images will be stored in Enhance/data/*

cd Enhance
# an example for pascal voc -> clipart under my environment
python extract_data.py --file_path /home/lishuaifeng/data/clipart/VOC2007/ImageSets/Main/traintest1k.txt --images_folder /home/lishuaifeng/data/clipart/VOC2007/JPEGImages --scenario_name voc2clipart --image_suffix jpg

Prepare encoder

Download the pre-trained vgg16 encoders from here, where 'vgg16_ori.pth' is extracted from rbgirshick/py-faster-rcnn and 'vgg16_cityscape.pth' is extracted from the source detector trained on Cityscapes. Put them into the folder named 'pre_trained'.

cd Enhance
mkdir pre_trained
cd pre_trained
# put the pre_trained vgg encoders here

Train the style enhancement module

For Pascal VOC -> Clipart, Pascal VOC -> Watercolor and KITTI -> Cityscapes, run the following commands to train the style enhancement module. 'vgg16_ori.pth' is used as the encoder.

cd Enhance
# an example for pascal voc -> clipart
python train.py --scenario_name voc2clipart --content_dir data/voc2clipart --style_dir data/voc2clipart --vgg pre_trained/vgg16_ori.pth --save_dir models/voc2clipart

For Cityscapes -> Foggy-Cityscapes, run the following commands to train the style enhancement module. 'vgg16_cityscape.pth' is used as the encoder.

python train.py --scenario_name city2foggy --content_dir data/city2foggy --style_dir data/meanfoggy --vgg pre_trained/vgg16_cityscape.pth --save_dir models/city2foggy

Download our trained models

If you don't want to train the style enhancemtn module by yourself, you can download our trained models from here.

Test the style enhancement module

Run the following commands to generate style enhanced images.

It should be noted that the test file is only used for debugging the style enhancement module, not for generating style enhanced images when overlooking target domain style.

cd Enhance
# an example for pascal voc -> clipart
python test.py --vgg pre_trained/vgg16_ori.pth --decoder models/voc2clipart/decoder_iter_160000.pth --fc1 models/voc2clipart/fc1_iter_160000.pth --fc2 models/voc2clipart/fc2_iter_160000.pth --content_dir data/voc2clipart --style_dir data/voc2clipart --output output/voc2clipart --alpha 1.0
# an example for cityscape -> foggy cityscape
python test.py --vgg pre_trained/vgg16_cityscape.pth --decoder models/city2foggy/decoder_iter_160000.pth --fc1 models/city2foggy/fc1_iter_160000.pth --fc2 models/city2foggy/fc2_iter_160000.pth --content_dir data/city2foggy --style_dir data/meanfoggy --output output/city2foggy --alpha 1.0

Overlooking style module

Compilation

Compile the cuda dependencies using following simple commands:

cd Overlook/lib
python setup.py build develop

It will compile all the modules you need, including NMS, ROI_Pooing, ROI_Align and ROI_Crop. The default version is compiled with Python 2.7, please compile by yourself if you are using a different python version. For more information, please refer to rbgirshick/py-faster-rcnn.

Prepare data

link your dataset dir to the dir named 'data':

cd Overlook
ln -s [your dataset dir] data

To prepare the datasets, please refer to krumo/Detectron-DA-Faster-RCNN, tiancity-NJU/da-faster-rcnn-PyTorch and VisionLearningGroup/DA_Detection.

Train the source detector

Run the following commands to train the source detector.

cd Overlook
# Pascal VOC -> clipart
python train_source.py --dataset voc2clipart --net res101 --cuda --bs 8
# Pascal VOC -> watercolor
python train_source.py --dataset voc2wc --net res101 --cuda --bs 8
# Cityscape -> Foggy-Cityscapes
python train_source.py --dataset city2foggy --net vgg16 --cuda --bs 8
# KITTI -> Cityscape
python train_source.py --dataset KC --net vgg16 --cuda --bs 8

To test the source detector's performance on the target domain, run the command:

# an example for pascal voc -> clipart
python test_source.py --dataset voc2clipart --tm target --lm [your model path] --net res101 --cuda

Copy models

Copy the trained enhancement models to the 'models' folder.

cd Overlook
mkdir models
mkdir models/enhance
# for Cityscapes -> Foggy-Cityscapes, copy the style image
cp -r ../Enhance/data/meanfoggy models/enhance
# copy the models for each scenario
cp -r ../Enhance/pre_trained models/enhance
cp -r ../Enhance/models/voc2clipart models/enhance
cp -r ../Enhance/models/voc2wc models/enhance
cp -r ../Enhance/models/city2foggy models/enhance
cp -r ../Enhance/models/KC models/enhance

The file tree of the 'enhance' folder is as follows:

./Overlook/models/enhance
├── city2foggy
│   ├── decoder_iter_160000.pth
│   ├── fc1_iter_160000.pth
│   └── fc2_iter_160000.pth
├── KC
│   ├── decoder_iter_160000.pth
│   ├── fc1_iter_160000.pth
│   └── fc2_iter_160000.pth
├── meanfoggy
│   └── meanfoggy.jpg
├── pre_trained
│   ├── vgg16_cityscape.pth
│   └── vgg16_ori.pth
├── voc2clipart
│   ├── decoder_iter_160000.pth
│   ├── fc1_iter_160000.pth
│   └── fc2_iter_160000.pth
└── voc2wc
    ├── decoder_iter_160000.pth
    ├── fc1_iter_160000.pth
    └── fc2_iter_160000.pth

Train and test the overlooking style module

If you have two GPUs , run the following commands to train and test the overlooking style module. It will train on GPU:0 and test on both GPU:0 and GPU:1 simultaneously.

# an example for Pascal VOC -> Clipart
python traintest_target.py --dataset voc2clipart --net res101 --rs True --checksession_source [your source detector session] --checkepoch_source [your source detector epoch] --checkpoint_source [your source detector point] --bs 1 --cuda --epochs 3 --random_style --style_add_alpha 1.0 --encoder_path models/enhance/pre_trained/vgg16_ori.pth --decoder_path models/enhance/voc2clipart/decoder_iter_160000.pth --fc1 models/enhance/voc2clipart/fc1_iter_160000.pth --fc2 models/enhance/voc2clipart/fc2_iter_160000.pth
# an example for Cityscapes -> Foggy-cityscapes
python traintest_target.py --dataset city2foggy --net vgg16 --rs True --checksession_source [your source detector session] --checkepoch_source [your source detector epoch] --checkpoint_source [your source detector point] --bs 1 --cuda --epochs 1 --style_add_alpha 0.4 --style_path models/enhance/meanfoggy/meanfoggy.jpg --encoder_path models/enhance/pre_trained/vgg16_cityscape.pth --decoder_path models/enhance/city2foggy/decoder_iter_160000.pth --fc1 models/enhance/city2foggy/fc1_iter_160000.pth --fc2 models/vgg16/city2foggy/fc2_iter_160000.pth

If you only have one GPU, run the following commands to train the overlooking style module.

# an example for Pascal VOC -> Clipart
python train_target.py --dataset voc2clipart --net res101 --rs True --checksession_source [your source detector session] --checkepoch_source [your source detector epoch] --checkpoint_source [your source detector point] --bs 1 --cuda --epochs 3 --random_style --style_add_alpha 1.0 --encoder_path models/enhance/pre_trained/vgg16_ori.pth --decoder_path models/enhance/voc2clipart/decoder_iter_160000.pth --fc1 models/enhance/voc2clipart/fc1_iter_160000.pth --fc2 models/enhance/voc2clipart/fc2_iter_160000.pth
# an example for Cityscapes -> Foggy-cityscapes
python train_target.py --dataset city2foggy --net vgg16 --rs True --checksession_source [your source detector session] --checkepoch_source [your source detector epoch] --checkpoint_source [your source detector point] --bs 1 --cuda --epochs 1 --style_add_alpha 0.4 --style_path models/enhance/meanfoggy/meanfoggy.jpg --encoder_path models/enhance/pre_trained/vgg16_cityscape.pth --decoder_path models/enhance/city2foggy/decoder_iter_160000.pth --fc1 models/enhance/city2foggy/fc1_iter_160000.pth --fc2 models/vgg16/city2foggy/fc2_iter_160000.pth

And run the following command to test the trained models one by one.

# an example for Pascal VOC -> Clipart
python test_target.py --dataset voc2clipart --tm target --lm [your model path] --net res101 --cuda

Acknowledgment

The implementation is built on the python implementation of Faster RCNN jwyang/faster-rcnn.pytorch and Arbitrary Style Transfer naoto0804/pytorch-AdaIN.