Authors: Andreas A. Buchheit, Jonathan Busse, Ruben Gutendorf, DevOps: Jan Schmitz
Contact: [email protected]
EpsteinLib is a C library designed for the fast and efficient computation of the Epstein zeta function for arbitrary multidimensional lattices. In addition to the C library, we also offer a Python package, epsteinlib, which can be easily installed via pip. For more information on the properties of the Epstein zeta function and on the underlying algorithm, see our recent preprint https://arxiv.org/abs/2412.16317.
Originally studied by Epstein [1,2], the Epstein zeta function forms the basis for computing general multidimensional lattice sums in classical and quantum physics applications [3]. Together with its regularization, it serves as the central ingredient in the singular Euler-Maclaurin (SEM) expansion, which generalizes the 300-year-old Euler summation formula to lattice sums in higher dimensions with physically relevant power-law interactions [4-5]. An efficiently computable representation of the Epstein zeta function is provided in [6,7,8]. In [8], we discuss in detail the analytical properties of the Epstein zeta function and present an algorithm for its computation, complete with error bounds.
For a
which can be meromorphically continued to
The Epstein zeta function is implemented in this library as
double complex epsteinZeta(double nu, unsigned int dim, const double *A, const double *x, const double *y);
In the Python package, it is implemented as
def epstein_zeta(
nu: Union[float, int],
A: NDArray[Union[np.integer[Any], np.floating[Any]]],
x: NDArray[Union[np.integer[Any], np.floating[Any]]],
y: NDArray[Union[np.integer[Any], np.floating[Any]]],
) -> complex
In the Mathematica package, it is implemented as
EpsteinZeta[\[Nu],A,x,y]
and evaluates to full precision over the whole parameter range up to ten dimensions.
The Epstein zeta function admits singularities in the lattice
- If
$(\boldsymbol x-\boldsymbol z)^2 < 10^{-64}$ for some$\boldsymbol z \in \Lambda$ , we numerically set$\boldsymbol x = \boldsymbol z$ . - Similarly, if
$(\boldsymbol y-\boldsymbol k)^2 < 10^{-64}$ , for some$\boldsymbol k \in\Lambda^*$ , we numerically set$\boldsymbol y = \boldsymbol k$ .
When evaluating
In addition, this library includes the regularized Epstein zeta function, which is analytic around
where
is the distributional Fourier transform of
In the c library, the regularized Epstein zeta function is included as
double complex epsteinZetaReg(double nu, unsigned int dim, const double *A, const double *x, const double *y);
in the Python package as
def epstein_zeta_reg(
nu: Union[float, int],
A: NDArray[Union[np.integer[Any], np.floating[Any]]],
x: NDArray[Union[np.integer[Any], np.floating[Any]]],
y: NDArray[Union[np.integer[Any], np.floating[Any]]],
) -> complex
and in the Mathematica package as
EpsteinZetaReg[\[Nu],A,x,y]
To ensure numerical stability when evaluating the regularized Epstein zeta function as a function of
- If
$(\boldsymbol x-\boldsymbol z)^2 < 10^{-64}$ for some$\boldsymbol z \in \Lambda$ , we numerically set$\boldsymbol x = \boldsymbol z$ .
Install our required dependencies: meson, ninja, pkg-config, python3 e.g. with
# Archlinux
pacman -S meson ninja pkgconf python
# MacOS
brew install meson ninja pkg-config python3
Currently, we support native Windows builds only with GCC installed via https://www.msys2.org/. Different environments may or may not work. However, for the full out of the box development experience we encourage Windows users to use WSL2 and follow the Linux installation instructions.
# Create and activate a virtual environment, if you're not already in one.
python3 -m venv .venv && source .venv/bin/activate
# Install epsteinlib
python -m pip install epsteinlib
- git clone https://github.com/epsteinlib/epsteinlib.git
cd epsteinlib
meson setup build
meson compile -C build
- To test the library, run
meson test -C build
Proceed either with system-wide or local installation.
System-wide installation
Meson supports a system-wide installation of the compiled library. After that, you can use #include <epsteinZeta.h>
and link the library with gcc -lepsteinZeta
. This may require superuser rights.
-
To install system-wide:
meson install -C build
. -
Try to compile the sample program in
test/lattice_sum.c
with the commandgcc -o lattice_sum lattice_sum.c -lm -lepsteinZeta
. You may encounter the problem that the shared library cannot be found. In this case, you need to modify the environment variables. Please continue with the next step. Otherwise, you are done. -
Update the environment variables to correctly locate the shared library at runtime. You can find
/path/to/library
in the output given bymeson install
.
# Linux
export $LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/library
# MacOS
export $DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/path/to/library
Local installation
- Copy the header
include/epsteinZeta.h
and move the compiled librarybuild/src/libepsteinZeta.so
to places of your choice, e. g.
cp include/epsteinZeta.h /your/path/to/include
mv build/src/libepsteinZeta.so /your/path/to/library
- To test your library, try to compile
test/lattice_sum.c
with the commandgcc -o lattice_sum lattice_sum.c -lm -L/your/path/to/library -lepsteinZeta -I/your/path/to/include
.
See https://epsteinlib.github.io/epsteinlib/.
Minimal working examples for calculating the Madelung constant in
// If the library is installed, compile with `gcc -o lattice_sum lattice_sum.c -lm -lepsteinZeta`
// If the library is not installed, compile with `gcc -o lattice_sum lattice_sum.c -lm -L/path/to/library -lepsteinZeta -I/path/to/include`
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include "epsteinZeta.h"
int main() {
// Madelung constant found in literature
double madelungRef = -1.7475645946331821906362120355443974;
unsigned int dim = 3;
double m[] = {1, 0, 0, 0, 1,
0, 0, 0, 1}; // identity matrix for whole numbers
double x[] = {0, 0, 0}; // no shift
double y[] = {0.5, 0.5, 0.5}; // alternating sum
double nu = 1.0;
double madelung = creal(epsteinZeta(nu, dim, m, x, y));
printf("Madelung sum in 3 dimensions:\t %.16lf\n", creal(madelung));
printf("Reference value:\t\t %.16lf\n", madelungRef);
printf("Relative error:\t\t\t +%.2e\n",
fabs(madelungRef - madelung) / fabs(madelungRef));
return fabs(madelung - madelungRef) > pow(10, -14);
}
import numpy as np
from epsteinlib import epstein_zeta
madelung_ref = -1.7475645946331821906362120355443974
dim = 3
a = np.identity(dim) # identity matrix for whole numbers
x = np.zeros(dim) # no shift
y = np.full(dim, 0.5) # alternating sum
nu = 1.0
madelung = np.real(epstein_zeta(nu, a, x, y))
print(f"Madelung sum in 3 dimensions:\t {madelung:.16f}")
print(f"Reference value:\t\t {madelung_ref:.16f}")
print(f"Relative error:\t\t\t +{abs(madelung_ref - madelung) / abs(madelung_ref):.2e}")
In the examples/python/
folder, you can find two more Python examples:
dispersion_relation_3d.py
: This script demonstrates how to use EpsteinLib to calculate quantum dispersion relations in 3D.sem_gaussian_1d.py
: This script showcases the Singular Euler-Maclaurin (SEM) expansion for a Gaussian function in 1D. It has an optional argument--nu
that can be used to set the value of nu. For example, you can run it withpython sem_gaussian_1d.py --nu 1
. If no value is provided, it defaults to nu = 1.5.
These examples, along with the lattice_sum.py
script, provide a comprehensive overview of how to use EpsteinLib in various scenarios.
<<"EpsteinZeta.wl"
madelungRef = -1.7475645946331821906362120355443974;
dim = 3;
A = IdentityMatrix[dim];
x = ConstantArray[0, dim];
y = ConstantArray[0.5, dim];
\[Nu] = 1.0;
madelung = Re[EpsteinZeta[\[Nu], A, x, y]];
Print["Madelung sum in 3 dimensions: ", NumberForm[madelung, 16]];
Print["Reference value: ", NumberForm[madelungRef, 16]];
Print["Relative error: +", ScientificForm[Abs[madelungRef - madelung]/Abs[madelungRef], 2]];
Executing this code snipped in the same folder as EpsteinZeta.wl
and setting SetDirectory[NotebookDirectory[]]
is the easiest way to help mathematica find the package.
We provide a nix devshell to have a reproducible development environment with the same dependencies across different operating systems. Once you have installed and configured nix, starting developing is as easy as running nix develop
.
Nix based - recommended
sudo tee -a /etc/nix/nix.conf <<CFG
max-jobs = auto
#max-jobs = 1
experimental-features = nix-command flakes auto-allocate-uids
auto-allocate-uids = true
auto-optimise-store = true
CFG
systemctl enable --now nix-daemon.socket
usermod -a -G nix-users <your username>
- Reboot
cd <path/to/repo>
nix develop
ornix run -- <your args>
Nix-Portable based - if you do not have root rights
- Install nix-portable:
mkdir -p ~/.local/bin
cd ~/.local/bin
curl -L https://github.com/DavHau/nix-portable/releases/latest/download/nix-portable-$(uname -m) > ./nix-portable
chmod +x ./nix-portable
cat > ./nix <<NIX
#!/usr/bin/env bash
CURDIR=\$(dirname "\$(readlink -f "\$0")")
NP_RUNTIME=bwrap "\$CURDIR/nix-portable" nix \$@
NIX
chmod +x ./nix
export PATH=~/.local/bin:"$PATH"
cd ~
nix run 'nixpkgs#hello'
- Configure
nix.conf
by executing
tee -a ~/.nix-portable/conf/nix.conf <<CFG
max-jobs = auto
#max-jobs = 1
auto-optimise-store = true
CFG
- Add
.local/bin
permanently to your PATH
echo 'PATH=$HOME/.local/bin:"$PATH"' >> ~/.env
echo 'export $(envsubst < .env)' | tee -a .bashrc >> .zshrc
cd <path/to/repo>
-
nix develop
ornix run -- <your args>
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
[1] P. Epstein. “Zur Theorie allgemeiner Zetafunctionen”. Math. Ann. 56 (1903), pp. 615–644.
[2] P. Epstein. “Zur Theorie allgemeiner Zetafunktionen. II”. Math. Ann. 63 (1906), pp. 205–216
[3] Andreas A. Buchheit et al. “Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors”, Phys. Rev. Research 5, 043065 (2023)
[4] Andreas A Buchheit and Torsten Keßler. “On the Efficient Computation of Large Scale Singular Sums with Applications to Long-Range Forces in Crystal Lattices”. J. Sci. Comput. 90.1 (2022), pp. 1–20
[5] Andreas A Buchheit and Torsten Keßler. “Singular Euler–Maclaurin expansion on multidimensional lattices”. Nonlinearity 35.7 (2022), p. 3706
[6] R. Crandall. “Unified algorithms for polylogarithm, L-series, and zeta variants”. Algorithmic Reflections: Selected Works. PSIpress, 2012
[7] Andreas A. Buchheit, Torsten Keßler, and Kirill Serkh. "On the computation of lattice sums without translational invariance". Mathematics of Computation (Oct. 2024)
[8] Andreas A. Buchheit, Jonathan Busse, and Ruben Gutendorf. "Computation and properties of the Epstein zeta function with high-performance implementation in EpsteinLib". arXiv preprint arXiv:2412.16317 (2024).