This project aims to detect blood cancer using AI techniques. It leverages deep learning models to analyze blood sample images and predict the presence of cancerous cells.
To set up the project, follow these steps:
-
Clone the repository:
git clone https://github.com/Enosha01/Blood-Cancer-Detection-Using-AI.git cd blood-cancer-detection
-
Create a virtual environment:
python -m venv env
-
Activate the virtual environment:
- On Windows:
.\env\Scripts\activate
- On macOS/Linux:
source env/bin/activate
- On Windows:
-
Install the required packages:
pip install -r requirements.txt
To run the application, use the following command:
python app.py
BLOOD CANCER DETECTION USING AI/
│
├── app.py
├── CODE.ipynb
├── dataset.txt
├── model.ipynb
├── sql.sql
├── vs blood cancer.ipynb
├── env/
│ ├── pyvenv.cfg
│ ├── Include/
│ ├── Lib/
│ └── Scripts/
├── images/
│ ├── Snap_057.jpg
│ ├── Snap_091.jpg
│ └── ...
├── models/
│ ├── CNN.h5
│ ├── FinalModel.h5
│ └── mobilenet.h5
├── static/
│ ├── css/
│ ├── fonts/
│ ├── img/
│ └── js/
├── templates/
│ ├── about.html
│ ├── blog-post.html
│ ├── index.html
│ ├── login.html
│ ├── loginhomepage.html
│ ├── README.md
│ └── Register.html
└── README.md
The dataset used for this project consists of blood sample images. The images are stored in the images/
directory.
To train the model, use the model.ipynb
notebook. It contains the code for data preprocessing, model architecture, training, and evaluation.
The trained models are saved in the models/
directory. You can evaluate the models using the model.ipynb
notebook.
To deploy the application, use the app.py
script. It sets up a web server to serve the model predictions.
Contributions are welcome! Please open an issue or submit a pull request.
This project is licensed under the MIT License..
For any questions or inquiries, please contact [email protected].