forked from namvo88/Thesis-Quadrotor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariables.tex
53 lines (45 loc) · 5.09 KB
/
variables.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
\chapter{Variables of the QR with load system}\label{ch:variables}
\begin{tabularx}{\linewidth}{lll}
$ \boldsymbol{\eta}_1=\mathbf{x}$&$ =\begin{bmatrix}\!x&\!\!y&\!\!z\end{bmatrix}^T\in \mathbb{R}^3 $ & Position of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
$ \boldsymbol{\eta}_2$&$= \begin{bmatrix}\!\psi &\!\!\theta &\!\!\phi\end{bmatrix}^T \in\mathbb{R}^3 $ & Angles of roll, pitch, yaw.\\
&&Parametrizes locally the orientation of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
$ \frac{d\boldsymbol{\eta}_1}{dt}=\mathbf{v}$&$= \begin{bmatrix}\!\dot{x}&\!\!\dot{y}&\!\!\dot{z}\end{bmatrix}^T\in \mathbb{R}^3$ & Velocity of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
$ \frac{d\boldsymbol{\eta}_2}{dt}={\boldsymbol{\omega}}$&$= \begin{bmatrix}\!\dot{\psi}&\!\!\dot{\theta}&\!\!\dot{\phi}\end{bmatrix}^T\in \mathbb{R}^3$ & Angular velocity of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
$ \boldsymbol{\nu}_1=\mathbf{v}^B$&$= \begin{bmatrix}\!u&\!\! v& \!\!w\end{bmatrix}^T \in\mathbb{R}^3 $ & Linear velocity of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $ in $ \{\mathcal{B}\} $\\
&&(i.e., body-fixed linear velocity)\\
$ \boldsymbol{\nu}_2=\boldsymbol{\omega}^B=\mathbf{\Omega}$&$= \begin{bmatrix}\!p &\!\!q&\!\! r\end{bmatrix}^T \in\mathbb{R}^3$ & Angular velocity of $ \{\mathcal{B}\}$ w.r.t. $ \{\mathcal{I}\} $ in $ \{\mathcal{B}\} $\\
&&(i.e., body-fixed angular velocity)\\
$ R(\boldsymbol{\eta}_2)=R$&$\in SO(3) $ & The rotation matrix from $ \{ \mathcal{B} \} $ to $ \{ \mathcal{I} \} $ \\
% $ v^B $&$ \in\mathbb{R}^3 $&Body velocity in $ \{\mathcal{B}\} $\\
% $ \omega^B$&$ \in\mathbb{R}^3$&Angular velocity in $ \{\mathcal{B}\} $\\
% $ {x}_q$&$ =\begin{bmatrix}\!x&\!\!y&\!\!z\end{bmatrix}^T $ & Position of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
% $ {v}_q$&$= \begin{bmatrix}\!\dot{x}&\!\!\dot{y}&\!\!\dot{z}\end{bmatrix}^T $ & Velocity of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
% $ \eta_2$&$= \begin{bmatrix}\!\phi &\!\!\theta &\!\!\psi\end{bmatrix}^T $ & Angles of roll, pitch, yaw. Orientation of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
% $ v$&$= \begin{bmatrix}\!u&\!\! v& \!\!w\end{bmatrix}^T $ & Body-fixed linear velocity of the origin of $ \{\mathcal{B}\} $ w.r.t. $ \{\mathcal{I}\} $\\
% $ \mathbf{\omega}$&$= \begin{bmatrix}\!p &\!\!q&\!\! r\end{bmatrix}^T$ & Body-fixed angular velocity of $ \{\mathcal{B}\}$ w.r.t. $ \{\mathcal{I}\} $\\
% $ \Omega$&$ $&Angular velocity in $ \{\mathcal{B}\} $\\
$ \boldsymbol{\eta} $ &$= \begin{bmatrix}\!x&\!\!y&\!\!z&\!\!\psi&\!\!\theta&\!\!\phi\end{bmatrix}^T $& Generalized coordinates of QR w.r.t. $ \{\mathcal{I}\} $ \\
$ \boldsymbol{\nu} $&$= \begin{bmatrix}\!u&\!\!v&\!\!w&\!\!p&\!\!q&\!\!r\end{bmatrix}^T $ & Vector of linear and angular velocities\\
$ \mathbf{r}$&&Position vector of \acs{cog} of QR in $ \{\mathcal{I}\} $\\
$ \mathbf{r}_{G}$&$=\begin{bmatrix}\!x_G&\!\!y_G&\!\!z_G\end{bmatrix}^T \in\mathbb{R}^3 $ & Distance from the origin of $ \{\mathcal{B}\} $ to \acs{cog} of QR\\
$ \mathbf{p}$ & $ \in S^2 $ & Unit vector from QR to load in $ \{\mathcal{I}\} $\\
$ \mathbf{x}_L, \mathbf{v}_L $ & $ \in \mathbb{R}^3 $ & Position and velocity vectors of suspended load in $ \{\mathcal{I}\} $\\
$ \boldsymbol{\omega}_L $ & $ \in \mathbb{R}^3 $ & Angular velocity of the suspended load in $ \{\mathcal{I}\} $\\
$ m, m_L $&$ \in \mathbb{R}$ & Mass of the QR and load \\
$ l_L $&$ \in\mathbb{R} $&Length of suspension cable\\
$ T $&$ \in\mathbb{R} $&Magnitude of tension in cable\\
$ l $ && Distance from \a{cog} to the center of each rotor\\
$\mathbb{I}$&$\in\mathbb{R}^{3x3} $ & QR inertia matrix of the QR with respect to $ \{\mathcal{B}\} $ \\
$ b, d $ && Thrust factor, drag factor\\
$ {I}_R$ && Rotor inertia \\
$ \Omega_i $ && Angular velocity of rotor $ i $ around its axis, $ i=\{1,2,3,4\} $.\\
$ f_i $&$ \in\mathbb{R} $&Thrust generated by the $ i $-th rotor along the $ \vec{b}_3 $ axis\\
$ f $ &$ =\sum_{i=1}^{4}f_i \in\mathbb{R} $& Total thrust magnitude\\
$ f^B $&$ =\begin{bmatrix} \!0 &\!\! 0&\!\! f \end{bmatrix}^T $ & External forces acting on QR with respect to $ \{\mathcal{B}\} $ \\
% $ \tau^B $&$=\begin{bmatrix} \!\tau_x &\!\! \tau_y&\!\! \tau_z \end{bmatrix}^T $ & External moments acting on QR with respect to $ \{\mathcal{B}\} $ \\
$ \boldsymbol{\tau}=M$&$=\begin{bmatrix} \!\tau_x &\!\! \tau_y&\!\! \tau_z \end{bmatrix}^T $ & Generalized torques vector in $ \{\mathcal{B}\} $ \\
$ \boldsymbol{\tau}_L$&$ =\begin{bmatrix}\!F_H&\!\!T_H\end{bmatrix}^T$ &Vector of forces and torques that the load exerts on QR \\
$ \{\mathbf{c}_1,\mathbf{c}_2,\mathbf{c}_3\} $ && Unit vectors without frame of reference\\
$ \{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3\} $ && Unit vectors along the axes of $ \{\mathcal{B}\} $\\
$ \{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\} $ && Unit vectors along the axes of $ \{\mathcal{I}\} $\\
\end{tabularx}