Before you initiate a pull request, please read the process document. Ideas should be thoroughly discussed on the swift-evolution mailing list first.
This repository tracks the ongoing evolution of Swift. It contains:
- Goals for upcoming Swift releases (this document).
- The Swift evolution review status tracking proposals to change Swift.
- The Swift evolution process that governs the evolution of Swift.
- Commonly Rejected Changes, proposals which have been denied in the past.
This document describes goals for the Swift language on a per-release basis, usually listing minor releases adding to the currently shipping version and one major release out. Each release will have many smaller features or changes independent of these larger goals, and not all goals are reached for each release.
Goals for past versions are included at the bottom of the document for historical purposes, but are not necessarily indicative of the features shipped. The release notes for each shipped version are the definitive list of notable changes in each release.
Expected release date: Late 2017
The Swift 4 release is designed around two primary goals: to provide source stability for Swift 3 code and to provide ABI stability for the Swift standard library. To that end, the Swift 4 release will be divided into two stages.
Stage 1 focused on the essentials required for source and ABI stability. Features that don't fundamentally change the ABI of existing language features or imply an ABI-breaking change to the standard library will not be considered in this stage.
Stage 2 opened in mid-February and extends until April 1, 2017, after which proposals will be held for a later version of Swift.
The high-priority features supporting Stage 1's source and ABI stability goals are:
-
Source stability features: the Swift language will need some accommodations to support code bases that target different language versions, to help Swift deliver on its source-compatibility goals while still enabling rapid progress.
-
Resilience: resilience provides a way for public APIs to evolve over time, while maintaining a stable ABI. For example, resilience eliminates the fragile base class problem that occurs in some object-oriented languages (e.g., C++) by describing the types of API changes that can be made without breaking ABI (e.g., "a new stored property or method can be added to a class").
-
Stabilizing the ABI: There are a ton of small details that need to be audited and improved in the code generation model, including interaction with the Swift runtime. While not specifically user-facing, the decisions here affect performance and (in some rare cases) the future evolution of Swift.
-
Generics improvements needed by the standard library: the standard library has a number of workarounds for language deficiencies, many of which manifest as extraneous underscored protocols and workarounds. If the underlying language deficiencies remain, they become a permanent part of the stable ABI. Conditional conformances, recursive protocol requirements, and where clauses for associated types are known to be in this category, but it's plausible that other features will be in scope if they would be used in the standard library.
-
String re-evaluation: String is one of the most important fundamental types in the language. Swift 4 seeks to make strings more powerful and easier-to-use, while retaining Unicode correctness by default.
-
Memory ownership model: an (opt-in) Cyclone/Rust-inspired memory ownership model is highly desired by systems programmers and for other high-performance applications that want predictable and deterministic performance. This feature will fundamentally shape the ABI, from low-level language concerns such as "inout" and low-level "addressors" to its impact on the standard library. While a full memory ownership model is likely too large for Swift 4 stage 1, we need a comprehensive design to understand how it will change the ABI.
Swift 4 stage 2 builds on the goals of stage 1. It differs in that stage 2 proposals may include some additive changes and changes to existing features that don't affect the ABI. There are a few focus areas for Swift 4 stage 2:
-
Stage 1 proposals: Any proposal that would have been eligible for stage 1 is a priority for stage 2.
-
Source-breaking changes: The Swift 4 compiler will provide a source-compatibility mode to allow existing Swift 3 sources to compile, but source-breaking changes can manifest in "Swift 4" mode. That said, changes to fundamental parts of Swift's syntax or standard library APIs that breaks source code are better front-loaded into Swift 4 than delayed until later releases. Relative to Swift 3, the bar for such changes is significantly higher:
- The existing syntax/API being changed must be actively harmful.
- The new syntax/API must clearly be better and not conflict with existing Swift syntax.
- There must be a reasonably automatable migration path for existing code.
-
Improvements to existing Standard Library facilities: Additive changes that improve existing standard library facilities can be considered. With standard library additions in particular, proposals that provide corresponding implementations are preferred. Potential focus areas for improvement include collections (e.g., new collection algorithms) and improvements to the ergonomics of
Dictionary
. -
Foundation improvements: We anticipate proposing some targeted improvements to Foundation API to continue the goal of making the Cocoa SDK work seamlessly in Swift. Details on the specific goals will be provided as we get started on Swift 4 stage 2.