Listed in (somewhat) chronological order, with some subdivisions by topic:
- MI Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An Introduction to Variational Methods for Graphical Models. Machine Learning. 1999;37:183-233
- C. Fox & SJ Roberts. A tutorial on variational Bayesian inference. Artificial intelligence review. 2012. 38;2:85-95
- D. Blei, A. Kucukelbir, and J. McAuliffe. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859-877, 2017.
- C. Zhang, et al. Advances in Variational Inference
- M. Hoffman, D. Blei, J. Paisley, and C. Wang. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
- Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In International Conference on Learning Representations.
- Ranganath, R., Gerrish, S., & Blei, D. M. (2014). Black Box Variational Inference. In Artificial Intelligence and Statistics.
- Rezende, D. J., & Mohamed, S. (2015). Variational Inference with Normalizing Flows. In International Conference on Machine Learning.
- Salimans, T., Kingma, D. P., & Welling, M. (2015). Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. In International Conference on Machine Learning.
- S. Mandt, M. Hoffman, and D. Blei. A variational analysis of stochastic gradient algorithms. International Conference on Machine Learning, 2016.
- R Ranganath, J Altosaar, D Tran, DM. Blei. Operator variational inference. NIPS 2016
- Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. NIPS 2016
- Li, Y., Swersky, K., & Zemel, R. (2015). Generative Moment Matching Networks. In International Conference on Machine Learning.
- Mohamed, S., & Lakshminarayanan, B. (2016). Learning in Implicit Generative Models. ArXiv.org.
- Tran, D., Ranganath, R., & Blei, D. M. (2017). Deep and Hierarchical Implicit Models. ArXiv.org.
- F. Husczar. Variational inference using implicit distributions. arXiv 2017
- H. Robbins & S. Monro. A stochastic approximation method. The annals of mathematical statistics. 1951; 22(3):400-407
- S. Kullback & RA Leibler. On information and sufficiency. The annals of mathematical statistics. 1951 22(1):79-86
- R. J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning, vol. 8, no. 23, 1992
- D. Blei. Variational Inference: Foundations and Innovations
- D. Blei. R. Ranganath, and S. Mohamed. Variational Inference: Foundations and Modern Methods (NIPS 2016)
- R. Ranganath. Bayesian Deep Learning and Black Box Variational Inference (2017)
- S. Mohamed. Variational Inference for Machine Learning (Tutorial)
- S. Mohamed & D. Rezende. Tutorial on Deep Generative Models
- Rajesh Ranganath's course on Deep Generative Models
- David Duvenaud's course on Learning Discrete Latent Structure
- David Duvenaud's course on Probabilistic Learning and Reasoning
- David Duvenaud's course on Differentiable Inference and Generative Models