Skip to content
/ amyloidAI Public

Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging

Notifications You must be signed in to change notification settings

CAAI/amyloidAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

amyloidAI

Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging.

Cite:

When using, please cite

Ladefoged, C.N., Anderberg, L., Madsen, K. et al.
Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging.
EJNMMI Phys 10, 44 (2023).
https://doi.org/10.1186/s40658-023-00562-7

Usage:

The algorithms require the PET image to be skull stripped and resampled to MNI space in 1x1x1 mm3 resolution and 256x256x256 matrix.

The templates to do this guided by CT or MRI are supplied. If the PET image is already preprocessed, simply call:

amyloidAI -i <PET.nii.gz>

To run the preprocessing as part of the algorithm you need to supply a CT or an MRI image that is aligned with the PET image:

amyloidAI -i <PET.nii.gz> --CT <CT.nii.gz>

or

amyloidAI -i <PET.nii.gz> --MRI <MRI.nii.gz>

Algorithm output and interpretation

The algorithm outputs (and prints) a dictionary with the keys: suvr, suvr_std, diagnosis, diagnosis_std. The main output, suvr and diagnosis, is the median and mean, respectively, of the 5-fold ensemble inference. The *_std outputs are the standard deviation of the five predicted values.

SUVr

SUVr < 1.35 can be interpreted as amyloid negative and > 1.35 as amyloid positive. A high standard deviation indicates less model certainty for the diagnosis of the patient.

Diagnosis

A diagnosis value < 0.5 indicates amyloid negative and > 0.5 amyloid positive. Here too, a larger standard deviation indicates less certainty for the diagnosis.

About

Estimation of brain amyloid accumulation using deep learning in clinical [11C]PiB PET imaging

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages