The repository provides the code and data used in our experiments.
python==3.7.13
torch==1.5.0
dgl==0.4.2
scikit-learn
tqdm
lmdb
data
: The inductive datasets split by GraIL
types
: The raw types of entities we obtained and the types of entities after preprocessing.
expri_save_models
: The trained models to generate experimental results in the paper.
We provide the commands to train and test our model, and the illustration of their parameters. Take nell_v1
for example.
-
training
python train.py -d nell_v1 -e nell_v1 -ne 20 --ont
-d
: the name of training dataset-e
: the directory of saved models-ne
: the number of epoches--ont
: type-enhanced model
-
test on
AUC-PR
python test_auc.py -d nell_v1_ind -e nell_v1 --ont --runs 5
-d
: the name of test dataset-e
: the directory of saved models--ont
: type-enhanced model--runs
: run times
-
test on
Hits@10
python test_ranking.py -d nell_v1_ind -e nell_v1 --ont
-d
: the name of test dataset-e
: the directory of saved models--ont
: type-enhanced model