forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
8 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,8 @@ | ||
# Yolo-v4 and Yolo-v3/v2 for Windows and Linux | ||
### (neural network for object detection) - Tensor Cores can be used on [Linux](https://github.com/AlexeyAB/darknet#how-to-compile-on-linux) and [Windows](https://github.com/AlexeyAB/darknet#how-to-compile-on-windows-using-cmake-gui) | ||
|
||
Paper Yolo v4: https://arxiv.org/abs/2004.10934 | ||
|
||
More details: http://pjreddie.com/darknet/yolo/ | ||
|
||
|
||
|
@@ -37,9 +39,13 @@ More details: http://pjreddie.com/darknet/yolo/ | |
11. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files) | ||
12. [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries) | ||
|
||
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | ![map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) [email protected] (AP50) - FPS (GeForce 1080 Ti) https://arxiv.org/abs/1911.11929 https://github.com/WongKinYiu/CrossStagePartialNetworks - more models | | ||
|
||
|
||
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | ![map_fps](https://user-images.githubusercontent.com/4096485/80163662-7ed04100-85df-11ea-8db7-1232b1158827.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934 | | ||
|---|---| | ||
|
||
* Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80163825-061db480-85e0-11ea-9ff9-13c7143789cb.png) | ||
* CSPNet: [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) [paper](https://arxiv.org/abs/1911.11929) Comparison: https://github.com/WongKinYiu/CrossStagePartialNetworks | ||
* Yolo v3 on MS COCO: [Speed / Accuracy ([email protected]) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg) | ||
* Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf | ||
* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg | ||
|
@@ -51,7 +57,7 @@ There are weights-file for different cfg-files (trained for MS COCO dataset): | |
|
||
FPS on RTX 2070 (R) and Tesla V100 (V): | ||
|
||
* [yolov4.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg) - 245 MB: [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT) | ||
* [yolov4.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg) - 245 MB: [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT) paper [Yolo v4](https://arxiv.org/abs/2004.10934) | ||
* `width=608 height=608` in cfg: **65.7% [email protected] (43.5% [email protected]:0.95) - 34(R) FPS / 62(V) FPS** - 128.5 BFlops | ||
* `width=512 height=512` in cfg: **64.9% [email protected] (43.0% [email protected]:0.95) - 45(R) FPS / 83(V) FPS** - 91.1 BFlops | ||
* `width=416 height=416` in cfg: **62.8% [email protected] (41.2% [email protected]:0.95) - 55(R) FPS / 96(V) FPS** - 60.1 BFlops | ||
|