Skip to content
View Addvilz's full-sized avatar

Sponsoring

@Seldaek
@jart
@django
@python
@sgolemon

Organizations

@libkafe @clarity-pm @moonspec

Block or report Addvilz

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Addvilz/README.md

/Mati:ss/

PGP

Answer to the Ultimate Question of Life, the Universe, and Everything
#include <stdio.h>
#include <sys/random.h>
#include <stdlib.h>
#include <gmp.h>

/**
* This program simulates a 2D quantum field inspired by ideas from quantum gravity
* and topological quantum field theory (TQFT). Think of it like a grid where each
* point represents a little quantum state with its complex field, energy, and
* some topological charge (basically a fancy number between -1 and 1). The fun
* part is watching how these fields evolve, interact, and distribute energy
* across the whole grid.
*
* We're using a grid to represent space-time. Each point (or cell) evolves based
* on its own quantum state and the states of its neighbors. This is similar to
* lattice gauge theory, where you break up continuous quantum fields into little
* chunks so we can simulate them on a computer.
*
* Each point has a quantum field, which is just a complex number (real and
* imaginary parts). These fields control the energy at each point. The fields
* evolve recursively, which means they change based on nearby points and
* sometimes even points far away due to quantum entanglement.
*
* Every point on the grid has a topological charge, which is a number between -1
* and 1. This charge acts as an invariant and affects how the quantum fields
* evolve over time. Topological charges are key in theories like TQFT and help
* stabilize the quantum states.
*
* The energy at each point comes from the quantum field's magnitude (|φ|²). The
* field evolves through a recursive, fractal-like process. This makes the system
* behave in complex, sometimes chaotic ways. There's also a small chance that
* points far away from each other interact, kind of like how quantum entanglement
* works.
*
* To prevent the energy from becoming uncontrollable, we use a technique called
* renormalization. This process redistributes the energy across the grid,
* ensuring a balanced and stable energy distribution.
*
* There's also an optional energy normalization step that makes sure the total
* energy stays within a reasonable range as the system evolves.
*
* Probably not scientifically accurate, but it's a fun way to play with quantum
* field theory concepts and fractal recursion.
**/

// Quantum lattice size
// Note: The larger the grid size, the slower the simulation will be. You better have a good CPU for this...
// Reduce the grid size if you want to run this on a potato.
#define GRID_SIZE 120
// Number of simulation steps. This is arbitrary though, the important part is the journey, not the destination.
#define TIME_STEPS 10000
// Probability of non-local entanglement
#define NONLOCAL_PROB 0.001
// Renormalization scale
#define RENORM_SCALE 5
// Precision for high-precision arithmetic
#define PRECISION 512
// Small epsilon value to avoid zero division or underflow
#define EPSILON 1e-10
// Enable energy normalization
#define ENABLE_ENERGY_NORMALIZATION 0
// Enable fireworks
#define ENABLE_FIREWORKS 1
// Print state every N time steps
#define REPORT_EVERY 100
// Print quantum field state every N time steps (must be more and multiple of REPORT_EVERY)
#define VISUALS_EVERY 1000


typedef struct {
    mpf_t real; // Real part of quantum field (high precision)
    mpf_t imag; // Imaginary part of quantum field (high precision)
    mpf_t energy_density; // Energy density at this point (high precision)
    mpf_t topological_charge; // Topological charge (continuous values)
} QuantumField;

void initialize_field(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_init2(field[i][j].real, PRECISION);
            mpf_init2(field[i][j].imag, PRECISION);
            mpf_init2(field[i][j].energy_density, PRECISION);
            mpf_init2(field[i][j].topological_charge, PRECISION);

            // Set random real and imaginary values for the quantum field
            // in the range [-10, 10]. This is the initial state of the field and is random.
            mpf_set_d(field[i][j].real, rand() / (double) RAND_MAX * 20.0 - 10.0);
            mpf_set_d(field[i][j].imag, rand() / (double) RAND_MAX * 20.0 - 10.0);

            // Set energy density to a non-zero value
            mpf_set_d(field[i][j].energy_density, 10.0);

            // Set random continuous topological charge in range [-1, 1]
            mpf_set_d(field[i][j].topological_charge, rand() / (double) RAND_MAX * 2.0 - 1.0);
        }
    }
}

void compute_scaling_factor(const QuantumField *field, mpf_t scaling_factor) {
    mpf_t temp;
    mpf_init2(temp, PRECISION);

    // scaling_factor = 10.0 / (1 + energy_density)
    mpf_set_d(temp, 1.0);
    mpf_add(temp, temp, field->energy_density);
    mpf_set_d(scaling_factor, 10.0);
    mpf_div(scaling_factor, scaling_factor, temp);

    mpf_mul(scaling_factor, scaling_factor, field->topological_charge);

    mpf_clear(temp);
}

// QF evolution function (fractal recursion with hyperloops (the other kind, go away, Elon))
void recursive_evolve( // NOLINT(*-no-recursion)
    QuantumField field[GRID_SIZE][GRID_SIZE],
    const int x,
    const int y,
    const int depth,
    mpf_t real_res,
    mpf_t imag_res
) {
    if (depth <= 0) {
        mpf_set(real_res, field[x][y].real);
        mpf_set(imag_res, field[x][y].imag);
        return;
    }

    const int nx = (x + depth + GRID_SIZE) % GRID_SIZE;
    const int ny = (y + depth + GRID_SIZE) % GRID_SIZE;

    mpf_t temp_real, temp_imag;
    mpf_init2(temp_real, PRECISION);
    mpf_init2(temp_imag, PRECISION);

    recursive_evolve(field, nx, ny, depth - 1, temp_real, temp_imag);

    mpf_t scaling_factor;
    mpf_init2(scaling_factor, PRECISION);
    compute_scaling_factor(&field[x][y], scaling_factor);

    mpf_mul(temp_real, temp_real, scaling_factor);
    mpf_mul(temp_imag, temp_imag, scaling_factor);

    mpf_add(real_res, field[x][y].real, temp_real);
    mpf_add(imag_res, field[x][y].imag, temp_imag);

    mpf_clear(temp_real);
    mpf_clear(temp_imag);
    mpf_clear(scaling_factor);
}

// Quantum gravity-inspired field interaction (non-local + anisotropic effects)
void evolve_field(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            // Random recursion depth (min 3, max 5)
            const int depth = rand() % 3 + 3;

            mpf_t real_res, imag_res;
            mpf_init2(real_res, PRECISION);
            mpf_init2(imag_res, PRECISION);

            recursive_evolve(field, i, j, depth, real_res, imag_res);

            mpf_set(field[i][j].real, real_res);
            mpf_set(field[i][j].imag, imag_res);

            mpf_mul(field[i][j].energy_density, real_res, real_res); // real^2
            mpf_t imag_sq;
            mpf_init2(imag_sq, PRECISION);
            mpf_mul(imag_sq, imag_res, imag_res); // imag^2
            mpf_add(field[i][j].energy_density, field[i][j].energy_density, imag_sq);

            mpf_clear(real_res);
            mpf_clear(imag_res);
            mpf_clear(imag_sq);
        }
    }
}

// Renormalization step to avoid infinities in the quantum field (numerical stabilization)
void renormalize_field(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    // This is going to be so fun to decode in a few years...
    for (int scale = 1; scale <= RENORM_SCALE; scale++) {
        for (int i = 0; i < GRID_SIZE; i += scale) {
            for (int j = 0; j < GRID_SIZE; j += scale) {
                mpf_t total_real, total_imag, total_energy;
                mpf_init2(total_real, PRECISION);
                mpf_init2(total_imag, PRECISION);
                mpf_init2(total_energy, PRECISION);

                // Sum over local fields to renormalize on different scales
                for (int dx = 0; dx < scale; dx++) {
                    for (int dy = 0; dy < scale; dy++) {
                        const int nx = (i + dx) % GRID_SIZE;
                        const int ny = (j + dy) % GRID_SIZE;
                        mpf_add(total_real, total_real, field[nx][ny].real);
                        mpf_add(total_imag, total_imag, field[nx][ny].imag);
                        mpf_add(total_energy, total_energy, field[nx][ny].energy_density);
                    }
                }

                // Renormalize by averaging the quantum states
                mpf_t scale_factor;
                mpf_init2(scale_factor, PRECISION);
                mpf_set_d(scale_factor, scale * scale);
                mpf_div(total_real, total_real, scale_factor);
                mpf_div(total_imag, total_imag, scale_factor);
                mpf_div(total_energy, total_energy, scale_factor);

                // Redistribute the averaged state to all lattice points in the block
                for (int dx = 0; dx < scale; dx++) {
                    for (int dy = 0; dy < scale; dy++) {
                        const int nx = (i + dx) % GRID_SIZE;
                        const int ny = (j + dy) % GRID_SIZE;
                        mpf_set(field[nx][ny].real, total_real);
                        mpf_set(field[nx][ny].imag, total_imag);
                        mpf_set(field[nx][ny].energy_density, total_energy);
                    }
                }

                mpf_clear(total_real);
                mpf_clear(total_imag);
                mpf_clear(total_energy);
                mpf_clear(scale_factor);
            }
        }
    }
}

// Optionally normalize total energy to conserve energy (see ENABLE_ENERGY_NORMALIZATION)
void normalize_total_energy(QuantumField field[GRID_SIZE][GRID_SIZE], mpf_t initial_total_energy) {
    mpf_t current_total_energy, scaling_factor, allowed_fluctuation;
    mpf_init2(current_total_energy, PRECISION);
    mpf_init2(scaling_factor, PRECISION);
    mpf_init2(allowed_fluctuation, PRECISION);

    mpf_set_d(current_total_energy, 0.0);
    mpf_set_d(allowed_fluctuation, 10); // Allow 10% energy fluctuation. Param?

    // Calculate current total energy
    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_add(current_total_energy, current_total_energy, field[i][j].energy_density);
        }
    }

    // Check if current total energy is within the allowed fluctuation range
    mpf_t upper_limit, lower_limit;
    mpf_init2(upper_limit, PRECISION);
    mpf_init2(lower_limit, PRECISION);

    mpf_mul(upper_limit, initial_total_energy, allowed_fluctuation);
    mpf_add(upper_limit, upper_limit, initial_total_energy);

    mpf_mul(lower_limit, initial_total_energy, allowed_fluctuation);
    mpf_sub(lower_limit, initial_total_energy, lower_limit);

    if (mpf_cmp(current_total_energy, lower_limit) > 0 && mpf_cmp(current_total_energy, upper_limit) < 0) {
        // Total energy is within the allowed fluctuation range, no need to normalize
        mpf_clear(current_total_energy);
        mpf_clear(scaling_factor);
        mpf_clear(allowed_fluctuation);
        mpf_clear(upper_limit);
        mpf_clear(lower_limit);
        return;
    }

    // scaling_factor = initial_total_energy / current_total_energy
    mpf_div(scaling_factor, initial_total_energy, current_total_energy);

    // Adjust fields to conserve energy
    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_mul(field[i][j].energy_density, field[i][j].energy_density, scaling_factor);
            mpf_mul(field[i][j].real, field[i][j].real, scaling_factor);
            mpf_mul(field[i][j].imag, field[i][j].imag, scaling_factor);
        }
    }

    mpf_clear(current_total_energy);
    mpf_clear(scaling_factor);
    mpf_clear(allowed_fluctuation);
    mpf_clear(upper_limit);
    mpf_clear(lower_limit);
}

void visualize_field(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    mpf_t max_energy, min_energy, range;
    mpf_init2(max_energy, PRECISION);
    mpf_init2(min_energy, PRECISION);
    mpf_init2(range, PRECISION);
    mpf_set_d(max_energy, 0.0);
    mpf_set_d(min_energy, 1e10);

    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            if (mpf_cmp(field[i][j].energy_density, max_energy) > 0) {
                mpf_set(max_energy, field[i][j].energy_density);
            }
            if (mpf_cmp(field[i][j].energy_density, min_energy) < 0) {
                mpf_set(min_energy, field[i][j].energy_density);
            }
        }
    }

    mpf_sub(range, max_energy, min_energy);

    char symbols[] = " .:-=+*#%@";

    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_t normalized_energy;
            mpf_init2(normalized_energy, PRECISION);

            // Normalize energy density between 0 and 1
            mpf_sub(normalized_energy, field[i][j].energy_density, min_energy);
            mpf_div(normalized_energy, normalized_energy, range);

            int symbol_index = (int) (mpf_get_d(normalized_energy) * (sizeof(symbols) - 2));
            symbol_index = symbol_index < 0 ? 0 : symbol_index;

            printf("%c", symbols[symbol_index]);

            mpf_clear(normalized_energy);
        }
        printf("\n");
    }

    mpf_clear(max_energy);
    mpf_clear(min_energy);
    mpf_clear(range);
}

void simulate_quantum_gravity(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    mpf_t initial_total_energy, prev_total_energy;
    mpf_init2(initial_total_energy, PRECISION);
    mpf_init2(prev_total_energy, PRECISION);
    mpf_set_d(initial_total_energy, 0.0);
    mpf_set_d(prev_total_energy, 0.0);

    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_add(initial_total_energy, initial_total_energy, field[i][j].energy_density);
        }
    }
    mpf_set(prev_total_energy, initial_total_energy);

    mpf_t energy_change_percentage, energy_diff;
    mpf_init2(energy_change_percentage, PRECISION);
    mpf_init2(energy_diff, PRECISION);

    for (int t = 0; t < TIME_STEPS; t++) {
        evolve_field(field);
        renormalize_field(field);

        if (ENABLE_ENERGY_NORMALIZATION == 1) {
            // Normalize total energy to conserve energy
            normalize_total_energy(field, initial_total_energy);
        }

        if (t % 100 == 0) {
            mpf_t total_energy, max_energy, min_energy, sum_energy;
            mpf_init2(total_energy, PRECISION);
            mpf_init2(max_energy, PRECISION);
            mpf_init2(min_energy, PRECISION);
            mpf_init2(sum_energy, PRECISION);

            mpf_set_d(max_energy, 0.0);
            mpf_set_d(min_energy, 1e10);
            mpf_set_d(sum_energy, 0.0);

            int low_count = 0, medium_count = 0, high_count = 0;

            for (int i = 0; i < GRID_SIZE; i++) {
                for (int j = 0; j < GRID_SIZE; j++) {
                    if (mpf_cmp(field[i][j].energy_density, max_energy) > 0) {
                        mpf_set(max_energy, field[i][j].energy_density);
                    }
                    if (mpf_cmp(field[i][j].energy_density, min_energy) < 0) {
                        mpf_set(min_energy, field[i][j].energy_density);
                    }
                    mpf_add(total_energy, total_energy, field[i][j].energy_density);
                }
            }

            mpf_t low_threshold, medium_threshold;
            mpf_init2(low_threshold, PRECISION);
            mpf_init2(medium_threshold, PRECISION);

            mpf_sub(energy_diff, max_energy, min_energy); // energy_diff = max_energy - min_energy
            mpf_div_ui(energy_diff, energy_diff, 3); // energy_diff /= 3
            mpf_add(low_threshold, min_energy, energy_diff); // low_threshold = min_energy + energy_diff

            mpf_mul_ui(energy_diff, energy_diff, 2); // energy_diff *= 2
            mpf_add(medium_threshold, min_energy, energy_diff);

            for (int i = 0; i < GRID_SIZE; i++) {
                for (int j = 0; j < GRID_SIZE; j++) {
                    if (mpf_cmp(field[i][j].energy_density, low_threshold) < 0) {
                        low_count++;
                    } else if (mpf_cmp(field[i][j].energy_density, medium_threshold) < 0) {
                        medium_count++;
                    } else {
                        high_count++;
                    }
                }
            }

            mpf_sub(energy_diff, total_energy, prev_total_energy);
            mpf_div(energy_change_percentage, energy_diff, prev_total_energy);

            mpf_mul_ui(energy_change_percentage, energy_change_percentage, 100);

            mpf_sub(energy_diff, max_energy, min_energy);

            // ================== Print simulation information ==================
            printf("Time step %d:\n", t);

            gmp_printf("  Energy Change from Previous Step: %.5Ff%%\n", energy_change_percentage);
            gmp_printf("  Energy Range (Max - Min): ");
            gmp_printf("%.E\n", energy_diff);

            printf("  Energy Distribution:\n");
            printf("    Low energy cells (<0.1): %d\n", low_count);
            printf("    Medium energy cells (0.1 - 0.5): %d\n", medium_count);
            printf("    High energy cells (>0.5): %d\n", high_count);

            // :D
            if (ENABLE_FIREWORKS == 1 && low_count == 0 && medium_count == 0) {
                printf("Your universe is too excited.....\n");
                printf("============================================\n");
                printf("============== GAME OVER ===================\n");
                printf("============================================\n");
                printf("Insert coin to continue \n");
                exit(0);
            }

            // Update the previous total energy for the next loop
            mpf_set(prev_total_energy, total_energy);

            if (t % VISUALS_EVERY == 0) {
                visualize_field(field);
            }
            // ================== End of simulation information ==================

            mpf_clear(total_energy);
            mpf_clear(max_energy);
            mpf_clear(min_energy);
            mpf_clear(sum_energy);
        }
    }

    mpf_clear(initial_total_energy);
    mpf_clear(prev_total_energy);
    mpf_clear(energy_change_percentage);
    mpf_clear(energy_diff);
}

void clear_field(QuantumField field[GRID_SIZE][GRID_SIZE]) {
    for (int i = 0; i < GRID_SIZE; i++) {
        for (int j = 0; j < GRID_SIZE; j++) {
            mpf_clear(field[i][j].real);
            mpf_clear(field[i][j].imag);
            mpf_clear(field[i][j].energy_density);
            mpf_clear(field[i][j].topological_charge);
        }
    }
}

void seed_random_from_urandom() {
    unsigned int seed;

    if (getrandom(&seed, sizeof(seed), 0) == -1) {
        perror("Failed to get random");
        exit(EXIT_FAILURE);
    }

    srand(seed);
}

int main() {
    seed_random_from_urandom();

    QuantumField field[GRID_SIZE][GRID_SIZE];
    initialize_field(field);

    simulate_quantum_gravity(field);

    clear_field(field);

    return 0;
}

Pinned Loading

  1. dots dots Public

    Completely automated desktop setup, configuration and maintenance using Ansible

    Shell 95 23

  2. libkafe/kafe libkafe/kafe Public

    Kafe is an open-source scriptable systems automation toolkit

    C++ 27

  3. clarity-pm/clarity clarity-pm/clarity Public

    A novel agile work management framework

    JavaScript 1 1