-
Notifications
You must be signed in to change notification settings - Fork 20
/
camdemo.py
77 lines (57 loc) · 1.85 KB
/
camdemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import sys,os
import cv2
caffe_root = '/home/lingkang/dnn_projects/caffe-ssd/caffe/'
sys.path.insert(0, caffe_root + 'python')
import caffe
import time
caffe.set_device(0)
caffe.set_mode_gpu()
net_file= 'MobileNetSSD_deploy.prototxt'
caffe_model='MobileNetSSD_deploy10695.caffemodel'
video_capture = cv2.VideoCapture(0)
if not os.path.exists(caffe_model):
print("MobileNetSSD_deploy.affemodel does not exist,")
print("use merge_bn.py to generate it.")
exit()
net = caffe.Net(net_file,caffe_model,caffe.TEST)
CLASSES = ('background',
'person')
def preprocess(src):
img = cv2.resize(src, (300,300))
img = img - 127.5
img = img * 0.007843
return img
def postprocess(img, out):
h = img.shape[0]
w = img.shape[1]
box = out['detection_out'][0,0,:,3:7] * np.array([w, h, w, h])
cls = out['detection_out'][0,0,:,1]
conf = out['detection_out'][0,0,:,2]
return (box.astype(np.int32), conf, cls)
def detect():
ret, origimg = video_capture.read()
img = preprocess(origimg)
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
net.blobs['data'].data[...] = img
start = time.time()
out = net.forward()
use_time=time.time() - start
print("time="+str(use_time)+"s")
box, conf, cls = postprocess(origimg, out)
for i in range(len(box)):
if conf[i] > 0.3:
p1 = (box[i][0], box[i][1])
p2 = (box[i][2], box[i][3])
cv2.rectangle(origimg, p1, p2, (0,255,0))
p3 = (max(p1[0], 15), max(p1[1], 15))
title = "%s:%.2f" % (CLASSES[int(cls[i])], conf[i])
cv2.putText(origimg, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
cv2.imshow("SSD", origimg)
cv2.waitKey(1) & 0xff
#Exit if ESC pressed
return True
if __name__ == '__main__':
while True:
detect()