forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstatic_infer.py
151 lines (130 loc) · 5.92 KB
/
static_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import warnings
import logging
import paddle
import sys
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
#sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from utils.utils_single import load_yaml, load_static_model_class, get_abs_model, create_data_loader, reset_auc
from utils.save_load import save_static_model, load_static_model
import time
import argparse
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser("PaddleRec train static script")
parser.add_argument("-m", "--config_yaml", type=str)
args = parser.parse_args()
args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
args.config_yaml = get_abs_model(args.config_yaml)
return args
def main(args):
paddle.seed(12345)
# load config
config = load_yaml(args.config_yaml)
config["config_abs_dir"] = args.abs_dir
# load static model class
static_model_class = load_static_model_class(config)
input_data = static_model_class.create_feeds(is_infer=True)
input_data_names = [data.name for data in input_data]
fetch_vars = static_model_class.infer_net(input_data)
logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
use_gpu = config.get("runner.use_gpu", True)
use_auc = config.get("runner.use_auc", False)
test_data_dir = config.get("runner.test_data_dir", None)
print_interval = config.get("runner.print_interval", None)
model_load_path = config.get("runner.infer_load_path", "model_output")
start_epoch = config.get("runner.infer_start_epoch", 0)
end_epoch = config.get("runner.infer_end_epoch", 10)
batch_size = config.get("runner.infer_batch_size", None)
sparse_feature_number = config.get(
"hyper_parameters.sparse_feature_number")
os.environ["CPU_NUM"] = str(config.get("runner.thread_num", 1))
logger.info("**************common.configs**********")
logger.info(
"use_gpu: {}, test_data_dir: {}, start_epoch: {}, end_epoch: {}, print_interval: {}, model_load_path: {}".
format(use_gpu, test_data_dir, start_epoch, end_epoch, print_interval,
model_load_path))
logger.info("**************common.configs**********")
place = paddle.set_device('gpu' if use_gpu else 'cpu')
exe = paddle.static.Executor(place)
# initialize
exe.run(paddle.static.default_startup_program())
test_dataloader = create_data_loader(
config=config, place=place, mode="test")
for epoch_id in range(start_epoch, end_epoch):
logger.info("load model epoch {}".format(epoch_id))
model_path = os.path.join(model_load_path, str(epoch_id))
load_static_model(
paddle.static.default_main_program(),
model_path,
prefix='rec_static')
accum_num_sum = 0
accum_num = 0
epoch_begin = time.time()
interval_begin = time.time()
for batch_id, batch_data in enumerate(test_dataloader()):
#print(np.array(batch_data[0]))
##b_size = len([dat[0] for dat in batch_data])
#print(b_size)
#wa = np.array([dat[0] for dat in batch_data]).astype(
# "int64").reshape(b_size)
#wb = np.array([dat[1] for dat in batch_data]).astype(
# "int64").reshape(b_size)
#wc = np.array([dat[2] for dat in batch_data]).astype(
# "int64").reshape(b_size)
fetch_batch_var = exe.run(
program=paddle.static.default_main_program(),
feed={
"analogy_a": np.array(batch_data[0]),
"analogy_b": np.array(batch_data[1]),
"analogy_c": np.array(batch_data[2]),
"all_label": np.arange(sparse_feature_number)
.reshape(sparse_feature_number).astype("int64")
},
fetch_list=[var for _, var in fetch_vars.items()])
pre = np.array(fetch_batch_var[0])
#pre = pred_idx.numpy()
label = np.array(batch_data[3])
inputs_word = np.array(batch_data[4])
for ii in range(len(label)):
top4 = pre[ii][0]
accum_num_sum += 1
for idx in top4:
if int(idx) in inputs_word[ii]:
continue
if int(idx) == int(label[ii][0]):
accum_num += 1
break
if batch_id % print_interval == 0:
logger.info(
"infer epoch: {}, batch_id: {}, acc: {:.6f}, speed: {:.2f} ins/s".
format(epoch_id, batch_id, accum_num * 1.0 / accum_num_sum,
print_interval * batch_size / (time.time() -
interval_begin)))
interval_begin = time.time()
logger.info("infer epoch: {} done, acc: {:.6f}, : epoch time{:.2f} s".
format(epoch_id, accum_num * 1.0 / accum_num_sum,
time.time() - epoch_begin))
epoch_begin = time.time()
if __name__ == "__main__":
paddle.enable_static()
args = parse_args()
main(args)