-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_lora_with_llama.py
336 lines (295 loc) · 13.6 KB
/
merge_lora_with_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# """
# Usage:
# python medical_prompts/src/ft_llama_lora/merge_llama_with_chinese_lora.py \
# --base_model ./models--decapoda-research--llama-7b-hf/snapshots/5f98eefcc80e437ef68d457ad7bf167c2c6a1348 \
# --lora_model ./models--ziqingyang--chinese-llama-plus-lora-7b/snapshots/32115d9a87767a8e00464dc560030a12bf38cb24,./models--ziqingyang--chinese-alpaca-plus-lora-7b/snapshots/8f4c20016de3c4c9a6fb47bc7082583849a37285 \
# --output_type huggingface \
# --output_dir ./resources/chinese-llama-alpaca-plus-lora-7b
# """
'''
/data/siqizhu/MetaMath$ python merge_lora_with_llama.py \
--base_model /data/dataset/llama/llama-2-7b-chat-hf/ \
--lora_model /data/siqizhu/merged_model_mar04/ \
--output_type huggingface \
--output_dir /data/siqizhu/llama-2-7b-chat-lora-math-mar04/
/data/siqizhu/MetaMath$ python merge_lora_with_llama.py \
--base_model /mnt/data/zhongrx/llama-2-7b-hf/ \
--lora_model /data/siqizhu/merged_model_llama2/ \
--output_type huggingface \
--output_dir /data/siqizhu/llama-2-7b-lora-math/
'''
import argparse
import json
import os
import gc
import torch
import sys
sys.path.append("./")
import peft
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
from huggingface_hub import hf_hub_download
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, required=True,
type=str, help="Please specify a base_model")
parser.add_argument('--lora_model', default=None, required=True,
type=str, help="Please specify LoRA models to be merged (ordered); use commas to separate multiple LoRA models.")
parser.add_argument('--offload_dir', default=None, type=str,
help="(Optional) Please specify a temp folder for offloading (useful for low-RAM machines). Default None (disable offload).")
parser.add_argument('--output_type', default='pth',choices=['pth','huggingface'], type=str,
help="save the merged model in pth or huggingface format.")
parser.add_argument('--output_dir', default='./', type=str)
emb_to_model_size = {
4096 : '7B',
5120 : '13B',
6656 : '30B',
8192 : '65B',
}
num_shards_of_models = {'7B': 1, '13B': 2}
params_of_models = {
'7B':
{
"dim": 4096,
"multiple_of": 256,
"n_heads": 32,
"n_layers": 32,
"norm_eps": 1e-06,
"vocab_size": -1,
},
'13B':
{
"dim": 5120,
"multiple_of": 256,
"n_heads": 40,
"n_layers": 40,
"norm_eps": 1e-06,
"vocab_size": -1,
},
}
def transpose(weight, fan_in_fan_out):
return weight.T if fan_in_fan_out else weight
# Borrowed and modified from https://github.com/tloen/alpaca-lora
def translate_state_dict_key(k):
k = k.replace("base_model.model.", "")
if k == "model.embed_tokens.weight":
return "tok_embeddings.weight"
elif k == "model.norm.weight":
return "norm.weight"
elif k == "lm_head.weight":
return "output.weight"
elif k.startswith("model.layers."):
layer = k.split(".")[2]
if k.endswith(".self_attn.q_proj.weight"):
return f"layers.{layer}.attention.wq.weight"
elif k.endswith(".self_attn.k_proj.weight"):
return f"layers.{layer}.attention.wk.weight"
elif k.endswith(".self_attn.v_proj.weight"):
return f"layers.{layer}.attention.wv.weight"
elif k.endswith(".self_attn.o_proj.weight"):
return f"layers.{layer}.attention.wo.weight"
elif k.endswith(".mlp.gate_proj.weight"):
return f"layers.{layer}.feed_forward.w1.weight"
elif k.endswith(".mlp.down_proj.weight"):
return f"layers.{layer}.feed_forward.w2.weight"
elif k.endswith(".mlp.up_proj.weight"):
return f"layers.{layer}.feed_forward.w3.weight"
elif k.endswith(".input_layernorm.weight"):
return f"layers.{layer}.attention_norm.weight"
elif k.endswith(".post_attention_layernorm.weight"):
return f"layers.{layer}.ffn_norm.weight"
elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
return None
else:
print(layer, k)
raise NotImplementedError
else:
print(k)
raise NotImplementedError
def unpermute(w):
return (
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
)
def save_shards(model_sd, num_shards: int):
# Add the no_grad context manager
with torch.no_grad():
if num_shards == 1:
new_state_dict = {}
for k, v in model_sd.items():
new_k = translate_state_dict_key(k)
if new_k is not None:
if "wq" in new_k or "wk" in new_k:
new_state_dict[new_k] = unpermute(v)
else:
new_state_dict[new_k] = v
os.makedirs(output_dir, exist_ok=True)
print(f"Saving shard 1 of {num_shards} into {output_dir}/consolidated.00.pth")
torch.save(new_state_dict, output_dir + "/consolidated.00.pth")
with open(output_dir + "/params.json", "w") as f:
json.dump(params, f)
else:
new_state_dicts = [dict() for _ in range(num_shards)]
for k in list(model_sd.keys()):
v = model_sd[k]
new_k = translate_state_dict_key(k)
if new_k is not None:
if new_k=='tok_embeddings.weight':
print(f"Processing {new_k}")
assert v.size(1)%num_shards==0
splits = v.split(v.size(1)//num_shards,dim=1)
elif new_k=='output.weight':
print(f"Processing {new_k}")
splits = v.split(v.size(0)//num_shards,dim=0)
elif new_k=='norm.weight':
print(f"Processing {new_k}")
splits = [v] * num_shards
elif 'ffn_norm.weight' in new_k:
print(f"Processing {new_k}")
splits = [v] * num_shards
elif 'attention_norm.weight' in new_k:
print(f"Processing {new_k}")
splits = [v] * num_shards
elif 'w1.weight' in new_k:
print(f"Processing {new_k}")
splits = v.split(v.size(0)//num_shards,dim=0)
elif 'w2.weight' in new_k:
print(f"Processing {new_k}")
splits = v.split(v.size(1)//num_shards,dim=1)
elif 'w3.weight' in new_k:
print(f"Processing {new_k}")
splits = v.split(v.size(0)//num_shards,dim=0)
elif 'wo.weight' in new_k:
print(f"Processing {new_k}")
splits = v.split(v.size(1)//num_shards,dim=1)
elif 'wv.weight' in new_k:
print(f"Processing {new_k}")
splits = v.split(v.size(0)//num_shards,dim=0)
elif "wq.weight" in new_k or "wk.weight" in new_k:
print(f"Processing {new_k}")
v = unpermute(v)
splits = v.split(v.size(0)//num_shards,dim=0)
else:
print(f"Unexpected key {new_k}")
raise ValueError
for sd,split in zip(new_state_dicts,splits):
sd[new_k] = split.clone()
del split
del splits
del model_sd[k],v
gc.collect() # Effectively enforce garbage collection
os.makedirs(output_dir, exist_ok=True)
for i,new_state_dict in enumerate(new_state_dicts):
print(f"Saving shard {i+1} of {num_shards} into {output_dir}/consolidated.0{i}.pth")
torch.save(new_state_dict, output_dir + f"/consolidated.0{i}.pth")
with open(output_dir + "/params.json", "w") as f:
print(f"Saving params.json into {output_dir}/params.json")
json.dump(params, f)
if __name__=='__main__':
args = parser.parse_args()
base_model_path = args.base_model
# lora_model_paths = [s.strip() for s in args.lora_model.split(',') if len(s.strip())!=0]
lora_model_paths = [
os.path.join(args.lora_model, f)
for f in os.listdir(args.lora_model)
]
output_dir = args.output_dir
output_type = args.output_type
offload_dir = args.offload_dir
print(f"Base model: {base_model_path}")
print(f"LoRA model(s) {lora_model_paths}:")
for lora_index, lora_model_path in enumerate(lora_model_paths):
if offload_dir is not None:
# Load with offloading, which is useful for low-RAM machines.
# Note that if you have enough RAM, please use original method instead, as it is faster.
base_model = LlamaForCausalLM.from_pretrained(
base_model_path,
load_in_8bit=False,
torch_dtype=torch.float16,
offload_folder=offload_dir,
offload_state_dict=True,
low_cpu_mem_usage=True,
device_map={"": "cpu"},
)
else:
# Original method without offloading
base_model = LlamaForCausalLM.from_pretrained(
base_model_path,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
print(base_model)
tokenizer = LlamaTokenizer.from_pretrained(base_model_path)
## infer the model size from the checkpoint
embedding_size = base_model.get_input_embeddings().weight.size(1)
model_size = emb_to_model_size[embedding_size]
print(f"Peft version: {peft.__version__}")
print(f"Loading LoRA for {model_size} model")
lora_model = None
lora_model_sd = None
print(f"Loading LoRA {lora_model_path}")
# tokenizer = LlamaTokenizer.from_pretrained(lora_model_path)
# if base_model.get_input_embeddings().weight.size(0) != len(tokenizer):
# base_model.resize_token_embeddings(len(tokenizer))
# print(f"Extended vocabulary size to {len(tokenizer)}")
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()
if hasattr(peft.LoraModel,'merge_and_unload'):
lora_model = PeftModel.from_pretrained(
base_model,
lora_model_path,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
assert torch.allclose(first_weight_old, first_weight)
print(f"Merging with merge_and_unload...")
base_model = lora_model.merge_and_unload()
else:
base_model_sd = base_model.state_dict()
try:
lora_model_sd = torch.load(os.path.join(lora_model_path,'adapter_model.safetensors'),map_location='cpu')
except FileNotFoundError:
print("Cannot find lora model on the disk. Downloading lora model from hub...")
filename = hf_hub_download(repo_id=lora_model_path,filename='adapter_model.safetensors')
lora_model_sd = torch.load(filename,map_location='cpu')
lora_config = peft.LoraConfig.from_pretrained(lora_model_path)
lora_scaling = lora_config.lora_alpha / lora_config.r
fan_in_fan_out = lora_config.fan_in_fan_out
lora_keys = [k for k in lora_model_sd if 'lora_A' in k]
non_lora_keys = [k for k in lora_model_sd if not 'lora_' in k]
for k in non_lora_keys:
print(f"merging {k}")
original_k = k.replace('base_model.model.','')
base_model_sd[original_k].copy_(lora_model_sd[k])
for k in lora_keys:
print(f"merging {k}")
original_key = k.replace('.lora_A','').replace('base_model.model.','')
assert original_key in base_model_sd
lora_a_key = k
lora_b_key = k.replace('lora_A','lora_B')
base_model_sd[original_key] += (
transpose(lora_model_sd[lora_b_key].float() @ lora_model_sd[lora_a_key].float(),fan_in_fan_out) * lora_scaling
)
assert base_model_sd[original_key].dtype == torch.float16
# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)
output_dir1 = os.path.join(output_dir, f"lora_{lora_index}")
tokenizer.save_pretrained(output_dir1)
if output_type=='huggingface':
print("Saving to Hugging Face format...")
LlamaForCausalLM.save_pretrained(
base_model, output_dir1,
max_shard_size="2GB"
) #, state_dict=deloreanized_sd)
else: # output_type=='pth
print("Saving to pth format...")
base_model_sd = base_model.state_dict()
del lora_model, base_model, lora_model_sd
params = params_of_models[model_size]
num_shards = num_shards_of_models[model_size]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
save_shards(model_sd=base_model_sd, num_shards=num_shards)