-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
222 lines (188 loc) · 9.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import os
import shutil
import sys
import torch
from easydict import EasyDict as edict
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from data import get_dataset, get_dataloader
from models import architectures, NgeNet
from losses import Loss
from utils import decode_config, setup_seed
CUR = os.path.dirname(os.path.abspath(__file__))
def save_summary(writer, loss_dict, global_step, tag, lr=None):
for k, v in loss_dict.items():
writer.add_scalar(f'{tag}/{k}', v, global_step)
if lr is not None:
writer.add_scalar('lr', lr, global_step)
def main():
setup_seed(1234)
config = decode_config(sys.argv[1])
config = edict(config)
config.architecture = architectures[config.dataset]
saved_path = config.exp_dir
saved_ckpt_path = os.path.join(saved_path, 'checkpoints')
saved_logs_path = os.path.join(saved_path, 'summary')
os.makedirs(saved_path, exist_ok=True)
os.makedirs(saved_ckpt_path, exist_ok=True)
os.makedirs(saved_logs_path, exist_ok=True)
shutil.copyfile(sys.argv[1], os.path.join(saved_path, f'{config.dataset}.yaml'))
train_dataset, val_dataset = get_dataset(config.dataset, config)
train_dataloader, neighborhood_limits = get_dataloader(config=config,
dataset=train_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=True,
neighborhood_limits=None)
val_dataloader, _ = get_dataloader(config=config,
dataset=val_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
neighborhood_limits=neighborhood_limits)
print(neighborhood_limits)
model = NgeNet(config).cuda()
model_loss = Loss(config)
if config.optimizer == 'SGD':
optimizer = torch.optim.SGD(
model.parameters(),
lr=config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay,
)
elif config.optimizer == 'ADAM':
optimizer = torch.optim.Adam(
model.parameters(),
lr=config.lr,
betas=(0.9, 0.999),
weight_decay=config.weight_decay,
)
# create learning rate scheduler
if config.scheduler == 'ExpLR':
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma=config.scheduler_gamma,
)
elif config.scheduler == 'CosA':
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
T_0=config.T_0,
T_mult=config.T_mult,
eta_min=config.eta_min,
last_epoch=-1)
else:
raise ValueError
writer = SummaryWriter(saved_logs_path)
best_recall, best_recall_sum, best_circle_loss, best_loss = 0, 0, 1e8, 1e8
w_saliency = config.w_saliency_loss
w_saliency_update = False
for epoch in range(config.max_epoch):
print('=' * 20, epoch, '=' * 20)
train_step, val_step = 0, 0
for inputs in tqdm(train_dataloader):
for k, v in inputs.items():
if isinstance(v, list):
for i in range(len(v)):
inputs[k][i] = inputs[k][i].cuda()
else:
inputs[k] = inputs[k].cuda()
optimizer.zero_grad()
batched_feats, batched_feats_m, batched_feats_l = model(inputs)
stack_points = inputs['points']
stack_lengths = inputs['stacked_lengths']
feats_src = batched_feats[:stack_lengths[0][0]]
feats_tgt = batched_feats[stack_lengths[0][0]:]
feats_src_m = batched_feats_m[:stack_lengths[0][0]]
feats_tgt_m = batched_feats_m[stack_lengths[0][0]:]
feats_src_l = batched_feats_l[:stack_lengths[0][0]]
feats_tgt_l = batched_feats_l[stack_lengths[0][0]:]
coors = inputs['coors'][0] # list, [coors1, coors2, ..], preparation for batchsize > 1
transf = inputs['transf'][0] # (1, 4, 4), preparation for batchsize > 1
points_raw = inputs['batched_points_raw']
coords_src = points_raw[:stack_lengths[0][0]]
coords_tgt = points_raw[stack_lengths[0][0]:]
loss_dict = model_loss(coords_src=coords_src,
coords_tgt=coords_tgt,
feats_src=feats_src,
feats_tgt=feats_tgt,
feats_src_m=feats_src_m,
feats_tgt_m=feats_tgt_m,
feats_src_l=feats_src_l,
feats_tgt_l=feats_tgt_l,
coors=coors,
transf=transf,
w_saliency=w_saliency)
loss = loss_dict['total_loss']
loss.backward()
optimizer.step()
global_step = epoch * len(train_dataloader) + train_step + 1
if global_step % config.log_freq == 0:
save_summary(writer, loss_dict, global_step, 'train',
lr=optimizer.param_groups[0]['lr'])
train_step += 1
# This line of code reduces the training speed.
# If GPU memory allows, it is recommended not to add this line of code or add this line after each epoch
torch.cuda.empty_cache()
scheduler.step()
total_circle_loss, total_recall, total_loss, total_recall_sum = [], [], [], []
model.eval()
with torch.no_grad():
for inputs in tqdm(val_dataloader):
for k, v in inputs.items():
if isinstance(v, list):
for i in range(len(v)):
inputs[k][i] = inputs[k][i].cuda()
else:
inputs[k] = inputs[k].cuda()
batched_feats, batched_feats_m, batched_feats_l = model(inputs)
stack_points = inputs['points']
stack_lengths = inputs['stacked_lengths']
feats_src = batched_feats[:stack_lengths[0][0]]
feats_tgt = batched_feats[stack_lengths[0][0]:]
feats_src_m = batched_feats_m[:stack_lengths[0][0]]
feats_tgt_m = batched_feats_m[stack_lengths[0][0]:]
feats_src_l = batched_feats_l[:stack_lengths[0][0]]
feats_tgt_l = batched_feats_l[stack_lengths[0][0]:]
coors = inputs['coors'][0] # list, [coors1, coors2, ..], preparation for batchsize > 1
transf = inputs['transf'][0] # (1, 4, 4), preparation for batchsize > 1
points_raw = inputs['batched_points_raw']
coords_src = points_raw[:stack_lengths[0][0]]
coords_tgt = points_raw[stack_lengths[0][0]:]
loss_dict = model_loss(coords_src=coords_src,
coords_tgt=coords_tgt,
feats_src=feats_src,
feats_tgt=feats_tgt,
feats_src_m=feats_src_m,
feats_tgt_m=feats_tgt_m,
feats_src_l=feats_src_l,
feats_tgt_l=feats_tgt_l,
coors=coors,
transf=transf,
w_saliency=w_saliency)
loss = loss_dict['circle_loss'] + loss_dict['circle_loss_m'] + loss_dict['circle_loss_l']
total_loss.append(loss.detach().cpu().numpy())
circle_loss = loss_dict['circle_loss']
total_circle_loss.append(circle_loss.detach().cpu().numpy())
recall = loss_dict['recall']
total_recall.append(recall.detach().cpu().numpy())
recall_sum = loss_dict['recall'] + loss_dict['recall_m'] + loss_dict['recall_l']
total_recall_sum.append(recall_sum.detach().cpu().numpy())
global_step = epoch * len(val_dataloader) + val_step + 1
if global_step % config.log_freq == 0:
save_summary(writer, loss_dict, global_step, 'val')
val_step += 1
# This line of code reduces the training speed.
# If GPU memory allows, it is recommended not to add this line of code or add this line after each epoch
torch.cuda.empty_cache()
if np.mean(total_circle_loss) < best_circle_loss:
best_circle_loss = np.mean(total_circle_loss)
torch.save(model.state_dict(), os.path.join(saved_ckpt_path, 'best_loss.pth'))
if np.mean(total_recall) > best_recall:
best_recall = np.mean(total_recall)
torch.save(model.state_dict(), os.path.join(saved_ckpt_path, 'best_recall.pth'))
if not w_saliency_update and np.mean(total_recall) > 0.3:
w_saliency_update = True
w_saliency = 1
model.train()
if __name__ == '__main__':
main()