-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval_kitti.py
179 lines (151 loc) · 8.04 KB
/
eval_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import copy
import glob
import numpy as np
import os
import pdb
import torch
import open3d as o3d
from easydict import EasyDict as edict
from tqdm import tqdm
from data import Kitti, get_dataloader
from models import architectures, NgeNet, vote
from utils import decode_config, npy2pcd, pcd2npy, execute_global_registration, \
npy2feat, vis_plys, setup_seed, fmat, to_tensor, get_blue, get_yellow
from metrics import Error_R, Error_t
CUR = os.path.dirname(os.path.abspath(__file__))
def main(args):
setup_seed(22)
config = decode_config(os.path.join(CUR, 'configs', 'kitti.yaml'))
config = edict(config)
config.architecture = architectures[config.dataset]
config.num_workers = 4
test_dataset = Kitti(root=args.data_root,
split='test',
aug=False,
voxel_size=config.first_subsampling_dl,
overlap_radius=config.overlap_radius,
max_coors=config.max_points)
test_dataloader, neighborhood_limits = get_dataloader(config=config,
dataset=test_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
neighborhood_limits=None)
print(neighborhood_limits)
model = NgeNet(config)
use_cuda = not args.no_cuda
if use_cuda:
model = model.cuda()
model.load_state_dict(torch.load(args.checkpoint))
else:
model.load_state_dict(
torch.load(args.checkpoint, map_location=torch.device('cpu')))
model.eval()
Ts, gt_Ts = [], []
with torch.no_grad():
for pair_ind, inputs in enumerate(tqdm(test_dataloader)):
if use_cuda:
for k, v in inputs.items():
if isinstance(v, list):
for i in range(len(v)):
inputs[k][i] = inputs[k][i].cuda()
else:
inputs[k] = inputs[k].cuda()
batched_feats_h, batched_feats_m, batched_feats_l = model(inputs)
stack_points = inputs['points']
stack_lengths = inputs['stacked_lengths']
coords_src = stack_points[0][:stack_lengths[0][0]]
coords_tgt = stack_points[0][stack_lengths[0][0]:]
feats_src_h = batched_feats_h[:stack_lengths[0][0]]
feats_tgt_h = batched_feats_h[stack_lengths[0][0]:]
feats_src_m = batched_feats_m[:stack_lengths[0][0]]
feats_tgt_m = batched_feats_m[stack_lengths[0][0]:]
feats_src_l = batched_feats_l[:stack_lengths[0][0]]
feats_tgt_l = batched_feats_l[stack_lengths[0][0]:]
coors = inputs['coors'][0] # list, [coors1, coors2, ..], preparation for batchsize > 1
transf = inputs['transf'][0] # (1, 4, 4), preparation for batchsize > 1
coors = coors.detach().cpu().numpy()
T = transf.detach().cpu().numpy()
source_npy = coords_src.detach().cpu().numpy()
target_npy = coords_tgt.detach().cpu().numpy()
source_npy_raw = copy.deepcopy(source_npy)
target_npy_raw = copy.deepcopy(target_npy)
source_feats_h = feats_src_h[:, :-2].detach().cpu().numpy()
target_feats_h = feats_tgt_h[:, :-2].detach().cpu().numpy()
source_feats_m = feats_src_m.detach().cpu().numpy()
target_feats_m = feats_tgt_m.detach().cpu().numpy()
source_feats_l = feats_src_l.detach().cpu().numpy()
target_feats_l = feats_tgt_l.detach().cpu().numpy()
source_overlap_scores = feats_src_h[:, -2].detach().cpu().numpy()
target_overlap_scores = feats_tgt_h[:, -2].detach().cpu().numpy()
source_saliency_scores = feats_src_h[:, -1].detach().cpu().numpy()
target_saliency_scores = feats_tgt_h[:, -1].detach().cpu().numpy()
source_scores = source_overlap_scores * source_saliency_scores
target_scores = target_overlap_scores * target_saliency_scores
npoints = args.npts
if source_npy.shape[0] > npoints:
p = source_scores / np.sum(source_scores)
idx = np.random.choice(len(source_npy), size=npoints, replace=False, p=p)
source_npy = source_npy[idx]
source_feats_h = source_feats_h[idx]
source_feats_m = source_feats_m[idx]
source_feats_l = source_feats_l[idx]
if target_npy.shape[0] > npoints:
p = target_scores / np.sum(target_scores)
idx = np.random.choice(len(target_npy), size=npoints, replace=False, p=p)
target_npy = target_npy[idx]
target_feats_h = target_feats_h[idx]
target_feats_m = target_feats_m[idx]
target_feats_l = target_feats_l[idx]
after_vote = vote(source_npy=source_npy,
target_npy=target_npy,
source_feats=[source_feats_h, source_feats_m, source_feats_l],
target_feats=[target_feats_h, target_feats_m, target_feats_l],
voxel_size=config.first_subsampling_dl,
use_cuda=use_cuda)
source_npy, target_npy, source_feats_npy, target_feats_npy = after_vote
M = torch.cdist(to_tensor(source_feats_npy, use_cuda), to_tensor(target_feats_npy, use_cuda))
row_max_inds = torch.min(M, dim=-1)[1].cpu().numpy()
col_max_inds = torch.min(M, dim=0)[1].cpu().numpy()
source, target = npy2pcd(source_npy), npy2pcd(target_npy)
source_feats, target_feats = npy2feat(source_feats_npy), npy2feat(target_feats_npy)
pred_T, estimate = execute_global_registration(source=source,
target=target,
source_feats=source_feats,
target_feats=target_feats,
voxel_size=config.first_subsampling_dl)
Ts.append(pred_T)
gt_Ts.append(T)
if args.vis:
source_ply = npy2pcd(source_npy_raw)
source_ply.paint_uniform_color(get_yellow())
estimate_ply = copy.deepcopy(source_ply).transform(pred_T)
target_ply = npy2pcd(target_npy_raw)
target_ply.paint_uniform_color(get_blue())
vis_plys([target_ply, estimate_ply], need_color=False)
Ts, gt_Ts = np.array(Ts), np.array(gt_Ts)
rot_error = Error_R(Ts[:, :3, :3], gt_Ts[:, :3, :3])
trans_error = Error_t(Ts[:, :3, 3], gt_Ts[:, :3, 3])
rot_threshold = 5
trans_threshold = 2
rot_flag = rot_error < rot_threshold
trans_flag = trans_error < trans_threshold
recall = (rot_flag & trans_flag).sum() / len(rot_flag)
RRE = np.mean(rot_error[rot_flag])
RTE = np.mean(trans_error[trans_flag])
print('Recall: ', fmat(recall))
print('RRE: ', fmat(RRE))
print('RTE: ', fmat(RTE))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Configuration Parameters')
parser.add_argument('--npts', type=int, default=5000,
help='the number of sampled points for registration')
parser.add_argument('--data_root', required=True, help='data root')
parser.add_argument('--checkpoint', required=True, help='checkpoint path')
parser.add_argument('--vis', action='store_true',
help='whether to visualize the point clouds')
parser.add_argument('--no_cuda', action='store_true',
help='whether to use cuda')
args = parser.parse_args()
main(args)