forked from eriklindernoren/PyTorch-YOLOv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
113 lines (88 loc) · 3.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import division
from models import *
from utils.logger import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=30, help="number of epochs")
parser.add_argument("--image_folder", type=str, default="data/samples", help="path to dataset")
parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch")
parser.add_argument("--model_config_path", type=str, default="config/yolov3.cfg", help="path to model config file")
parser.add_argument("--data_config_path", type=str, default="config/coco.data", help="path to data config file")
parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file")
parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--checkpoint_model", type=str, help="if specified starts from checkpoint model")
parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights")
opt = parser.parse_args()
print(opt)
logger = Logger("logs")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config_path)
train_path = data_config["train"]
# Get hyper parameters
hyperparams = parse_model_config(opt.model_config_path)[0]
learning_rate = float(hyperparams["learning_rate"])
momentum = float(hyperparams["momentum"])
decay = float(hyperparams["decay"])
burn_in = int(hyperparams["burn_in"])
# Initiate model
model = Darknet(opt.model_config_path).to(device)
model.apply(weights_init_normal)
if opt.checkpoint_model:
model.load_state_dict(torch.load(opt.checkpoint_model))
model.train()
# Get dataloader
dataloader = torch.utils.data.DataLoader(
ListDataset(train_path), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu
)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
for epoch in range(opt.epochs):
for batch_i, (_, imgs, targets) in enumerate(dataloader):
imgs = Variable(imgs.to(device))
targets = Variable(targets.to(device), requires_grad=False)
optimizer.zero_grad()
loss = model(imgs, targets)
loss.backward()
optimizer.step()
print(
"[Epoch %d/%d, Batch %d/%d] [Losses: total %f, x %f, y %f, w %f, h %f, conf %f, cls %f, recall: %.5f, precision: %.5f]"
% (
epoch,
opt.epochs,
batch_i,
len(dataloader),
model.losses["loss"],
model.losses["x"],
model.losses["y"],
model.losses["w"],
model.losses["h"],
model.losses["conf"],
model.losses["cls"],
model.losses["recall"],
model.losses["precision"],
)
)
batches_done = len(dataloader) * epoch + batch_i
# Tensorboard logging
for loss_name, loss in model.losses.items():
logger.scalar_summary(loss_name, loss, batches_done)
model.seen += imgs.size(0)
torch.cuda.empty_cache()
if epoch % opt.checkpoint_interval == 0:
torch.save(model.state_dict(), f"checkpoints/%d.pth")