forked from Issam28/Brain-tumor-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_patches.py
266 lines (210 loc) · 9.27 KB
/
extract_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import random
#from skimage import io
import numpy as np
from glob import glob
import SimpleITK as sitk
from keras.utils import np_utils
class Pipeline(object):
def __init__(self, list_train ,Normalize=True):
self.scans_train = list_train
self.train_im=self.read_scans(Normalize)
def read_scans(self,Normalize):
train_im=[]
for i in range(len( self.scans_train)):
if i%10==0:
print('iteration [{}]'.format(i))
flair = glob( self.scans_train[i] + '/*_flair.nii.gz')
t2 = glob( self.scans_train[i] + '/*_t2.nii.gz')
gt = glob( self.scans_train[i] + '/*_seg.nii.gz')
t1 = glob( self.scans_train[i] + '/*_t1.nii.gz')
t1c = glob( self.scans_train[i] + '/*_t1ce.nii.gz')
t1s=[scan for scan in t1 if scan not in t1c]
if (len(flair)+len(t2)+len(gt)+len(t1s)+len(t1c))<5:
print("there is a problem here!!! the problem lies in this patient :", self.scans_train[i])
continue
scans = [flair[0], t1s[0], t1c[0], t2[0], gt[0]]
#read a volume composed of 4 modalities
tmp = [sitk.GetArrayFromImage(sitk.ReadImage(scans[k])) for k in range(len(scans))]
#crop each volume to have a size of (146,192,152) to discard some unwanted background and thus save some computational power ;)
z0=1
y0=29
x0=42
z1=147
y1=221
x1=194
tmp=np.array(tmp)
tmp=tmp[:,z0:z1,y0:y1,x0:x1]
#normalize each slice
if Normalize==True:
tmp=self.norm_slices(tmp)
train_im.append(tmp)
del tmp
return np.array(train_im)
def sample_patches_randomly(self, num_patches, d , h , w ):
'''
INPUT:
num_patches : the total number of samled patches
d : this correspnds to the number of channels which is ,in our case, 4 MRI modalities
h : height of the patch
w : width of the patch
OUTPUT:
patches : np array containing the randomly sampled patches
labels : np array containing the corresping target patches
'''
patches, labels = [], []
count = 0
#swap axes to make axis 0 represents the modality and axis 1 represents the slice. take the ground truth
gt_im = np.swapaxes(self.train_im, 0, 1)[4]
#take flair image as mask
msk = np.swapaxes(self.train_im, 0, 1)[0]
#save the shape of the grounf truth to use it afterwards
tmp_shp = gt_im.shape
#reshape the mask and the ground truth to 1D array
gt_im = gt_im.reshape(-1).astype(np.uint8)
msk = msk.reshape(-1).astype(np.float32)
# maintain list of 1D indices while discarding 0 intensities
indices = np.squeeze(np.argwhere((msk!=-9.0) & (msk!=0.0)))
del msk
# shuffle the list of indices of the class
np.random.shuffle(indices)
#reshape gt_im
gt_im = gt_im.reshape(tmp_shp)
#a loop to sample the patches from the images
i = 0
pix = len(indices)
while (count<num_patches) and (pix>i):
#randomly choose an index
ind = indices[i]
i+= 1
#reshape ind to 3D index
ind = np.unravel_index(ind, tmp_shp)
# get the patient and the slice id
patient_id = ind[0]
slice_idx=ind[1]
p = ind[2:]
#construct the patch by defining the coordinates
p_y = (p[0] - (h)/2, p[0] + (h)/2)
p_x = (p[1] - (w)/2, p[1] + (w)/2)
p_x=list(map(int,p_x))
p_y=list(map(int,p_y))
#take patches from all modalities and group them together
tmp = self.train_im[patient_id][0:4, slice_idx,p_y[0]:p_y[1], p_x[0]:p_x[1]]
#take the coresponding label patch
lbl=gt_im[patient_id,slice_idx,p_y[0]:p_y[1], p_x[0]:p_x[1]]
#keep only paches that have the desired size
if tmp.shape != (d, h, w) :
continue
patches.append(tmp)
labels.append(lbl)
count+=1
patches = np.array(patches)
labels=np.array(labels)
return patches, labels
def norm_slices(self,slice_not):
'''
normalizes each slice , excluding gt
subtracts mean and div by std dev for each slice
clips top and bottom one percent of pixel intensities
'''
normed_slices = np.zeros(( 5,146, 192, 152)).astype(np.float32)
for slice_ix in range(4):
normed_slices[slice_ix] = slice_not[slice_ix]
for mode_ix in range(146):
normed_slices[slice_ix][mode_ix] = self._normalize(slice_not[slice_ix][mode_ix])
normed_slices[-1]=slice_not[-1]
return normed_slices
def _normalize(self,slice):
'''
input: unnormalized slice
OUTPUT: normalized clipped slice
'''
b = np.percentile(slice, 99)
t = np.percentile(slice, 1)
slice = np.clip(slice, t, b)
image_nonzero = slice[np.nonzero(slice)]
if np.std(slice)==0 or np.std(image_nonzero) == 0:
return slice
else:
tmp= (slice - np.mean(image_nonzero)) / np.std(image_nonzero)
#since the range of intensities is between 0 and 5000 ,the min in the normalized slice corresponds to 0 intensity in unnormalized slice
#the min is replaced with -9 just to keep track of 0 intensities so that we can discard those intensities afterwards when sampling random patches
tmp[tmp==tmp.min()]=-9
return tmp
'''
def save_image_png (img,output_file="img.png"):
"""
save 2d image to disk in a png format
"""
img=np.array(img).astype(np.float32)
if np.max(img) != 0:
img /= np.max(img) # set values < 1
if np.min(img) <= -1: # set values > -1
img /= abs(np.min(img))
io.imsave(output_file, img)
'''
def concatenate ():
'''
concatenate two parts into one dataset
this can be avoided if there is enough RAM as we can directly from the whole dataset
'''
Y_labels_2=np.load("y_dataset_second_part.npy").astype(np.uint8)
X_patches_2=np.load("x_dataset_second_part.npy").astype(np.float32)
Y_labels_1=np.load("y_dataset_first_part.npy").astype(np.uint8)
X_patches_1=np.load("x_dataset_first_part.npy").astype(np.float32)
#concatenate both parts
X_patches=np.concatenate((X_patches_1, X_patches_2), axis=0)
Y_labels=np.concatenate((Y_labels_1, Y_labels_2), axis=0)
del Y_labels_2,X_patches_2,Y_labels_1,X_patches_1
#shuffle the whole dataset
shuffle = list(zip(X_patches, Y_labels))
np.random.seed(138)
np.random.shuffle(shuffle)
X_patches = np.array([shuffle[i][0] for i in range(len(shuffle))])
Y_labels = np.array([shuffle[i][1] for i in range(len(shuffle))])
del shuffle
np.save( "x_training",X_patches.astype(np.float32) )
np.save( "y_training",Y_labels.astype(np.uint8))
#np.save( "x_valid",X_patches_valid.astype(np.float32) )
#np.save( "y_valid",Y_labels_valid.astype(np.uint8))
if __name__ == '__main__':
#Paths for Brats2017 dataset
path_HGG = glob('Brats2017/Brats17TrainingData/HGG/**')
path_LGG = glob('Brats2017/Brats17TrainingData/LGG/**')
path_all=path_HGG+path_LGG
#shuffle the dataset
np.random.seed(2022)
np.random.shuffle(path_all)
np.random.seed(1555)
start=0
end=20
#set the total number of patches
#this formula extracts approximately 3 patches per slice
num_patches=146*(end-start)*3
#define the size of a patch
h=128
w=128
d=4
pipe=Pipeline(list_train=path_all[start:end],Normalize=True)
Patches,Y_labels=pipe.sample_patches_randomly(num_patches,d, h, w)
#transform the data to channels_last keras format
Patches=np.transpose(Patches,(0,2,3,1)).astype(np.float32)
# since the brats2017 dataset has only 4 labels,namely 0,1,2 and 4 as opposed to previous datasets
# this transormation is done so that we will have 4 classes when we one-hot encode the targets
Y_labels[Y_labels==4]=3
#transform y to one_hot enconding for keras
shp=Y_labels.shape[0]
Y_labels=Y_labels.reshape(-1)
Y_labels = np_utils.to_categorical(Y_labels).astype(np.uint8)
Y_labels=Y_labels.reshape(shp,h,w,4)
#shuffle the whole dataset
shuffle = list(zip(Patches, Y_labels))
np.random.seed(180)
np.random.shuffle(shuffle)
Patches = np.array([shuffle[i][0] for i in range(len(shuffle))])
Y_labels = np.array([shuffle[i][1] for i in range(len(shuffle))])
del shuffle
print("Size of the patches : ",Patches.shape)
print("Size of their correponding targets : ",Y_labels.shape)
#save to disk as npy files
#np.save( "x_dataset_first_part",Patches )
#np.save( "y_dataset_first_part",Y_labels)