forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayesian_hierarchical.Rmd
720 lines (515 loc) · 14.7 KB
/
bayesian_hierarchical.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
# 贝叶斯层级模型 {#bayesian-hierarchical}
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidybayes)
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```
## 明尼苏达州房屋中氡的存在
```{r}
radon <- readr::read_rds(here::here('demo_data', "radon.rds"))
head(radon)
```
数据来源美国明尼苏达州85个县中房屋氡含量测量
- `log_radon` 房屋氡含量 (log scale)
- `log_uranium` 这个县放射性化学元素铀的等级 (log scale)
- `floor` 房屋楼层 (0 = basement, 1 = first floor)
- `county` 所在县 (factor)
## 任务
估计房屋中的氡含量。
### 可视化探索
```{r}
df_n_county <- radon %>%
group_by(county) %>%
summarise(
n = n()
)
df_n_county
```
统计每个县,样本量、氡含量均值、标准差、铀等级的均值、标准误
```{r}
radon_county <- radon %>%
group_by(county) %>%
summarise(
log_radon_mean = mean(log_radon),
log_radon_sd = sd(log_radon),
log_uranium = mean(log_uranium),
n = length(county)
) %>%
mutate(log_radon_se = log_radon_sd / sqrt(n))
radon_county
```
```{r fig.asp=2}
ggplot() +
geom_boxplot(data = radon,
mapping = aes(y = log_radon,
x = fct_reorder(county, log_radon, mean)),
colour = "gray") +
geom_point(data = radon,
mapping = aes(y = log_radon,
x = fct_reorder(county, log_radon, mean)),
colour = "gray") +
geom_point(data = radon_county,
mapping = aes(x = fct_reorder(county, log_radon_mean),
y = log_radon_mean),
colour = "red") +
coord_flip() +
labs(y = "log(radon)", x = "")
```
### pooling model
这是最简单的模型,该模型假定所有的房屋的氡含量来自同一个分布, 估计整体的均值和方差
$$
\begin{aligned}[t]
y_i &\sim \operatorname{normal}(\mu, \sigma) \\
\mu &\sim \operatorname{normal}(0, 10) \\
\sigma &\sim \operatorname{exp}(1)
\end{aligned}
$$
这里我们指定 $\mu$ 和 $\sigma$ 较弱的先验信息.
```{r}
stan_program <- "
data {
int N;
vector[N] y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0, 10);
sigma ~ exponential(1);
y ~ normal(mu, sigma);
}
"
stan_data <- list(
N = nrow(radon),
y = radon$log_radon
)
fit_pooling <- stan(model_code = stan_program, data = stan_data)
```
模型估计了均值和方差两个参数。
```{r}
summary(fit_pooling)$summary
```
### no-pooling model
每个县都有**独立**的均值和方差,又叫 *individual model*
$$
\begin{aligned}[t]
y_i &\sim \operatorname{normal}(\mu_{j[i]}, \sigma) \\
\mu_j &\sim \operatorname{normal}(0, 10) \\
\sigma &\sim \operatorname{exp}(1)
\end{aligned}
$$
其中, $j[i]$ 表示观测$i$对应的所在县。
```{r}
stan_program <- "
data {
int<lower=1> N;
int<lower=2> J;
int<lower=1, upper=J> county[N];
vector[N] y;
}
parameters {
vector[J] mu;
real<lower=0> sigma;
}
model {
mu ~ normal(0, 10);
sigma ~ exponential(1);
for(i in 1:N) {
y[i] ~ normal(mu[county[i]], sigma);
}
}
"
stan_data <- list(
N = nrow(radon),
J = length(unique(radon$county)),
county = as.numeric(radon$county),
y = radon$log_radon
)
fit_no_pooling <- stan(model_code = stan_program, data = stan_data)
```
```{r}
summary(fit_no_pooling)$summary
```
有多少县,就有多少个模型,每个模型有一个 $\mu$,参数$\sigma$是共同的。需要注意的是,每组之间彼此独立的,没有共享信息。
### partially pooled model
和 "no-pooling model" 模型一样,每个县都有自己的均值,但是,这些县彼此会分享信息,一个县获取的信息可以帮助我们估计其它县的均值。
- 模型同时考虑各个类别数据中的信息以及整个群体中的信息
- 怎么叫共享信息?参数来自同一个分布
- 怎么做到的呢?通过先验
$$
\begin{aligned}[t]
y_i &\sim \operatorname{normal}(\mu_{j[i]}, \sigma) \\
\mu_j &\sim \operatorname{normal}(\gamma, \tau) \\
\gamma &\sim \operatorname{normal}(0, 5) \\
\tau &\sim \operatorname{exp}(1)
\end{aligned}
$$
每个县的氡含量均值$\mu_j$都服从均值为 $\gamma$、标准差为 $\tau$ 的正态分布。但先验分布中的参数
$\gamma$ 和 $\tau$ 都各自有自己的先验分布,即**参数的参数**, 通常称之为**超参数**,这就是多层模型中"层"的来历,$\mu_j$ 是第一层参数,$\gamma$ 是第二层参数。
- $\gamma$ 和 $\tau$ 的先验称为 **超先验分布**。
- **超参数**是多层模型的标志。
```{r}
stan_program <- "
data {
int<lower=1> N;
int<lower=2> J;
int<lower=1, upper=J> county[N];
vector[N] y;
}
parameters {
vector[J] mu;
real mu_a;
real<lower=0> sigma_y;
real<lower=0> sigma_a;
}
model {
mu_a ~ normal(0, 5);
sigma_a ~ exponential(1);
sigma_y ~ exponential(1);
mu ~ normal(mu_a, sigma_a);
for(i in 1:N) {
y[i] ~ normal(mu[county[i]], sigma_y);
}
}
"
stan_data <- list(
N = nrow(radon),
J = length(unique(radon$county)),
county = as.numeric(radon$county),
y = radon$log_radon
)
fit_partial_pooling <- stan(model_code = stan_program, data = stan_data)
```
```{r}
summary(fit_partial_pooling)$summary
```
### 对比三个模型
```{r, out.width = '85%', echo = FALSE}
knitr::include_graphics(here::here("images", "hirerachical.jpg"))
```
对比三个模型的结果
```{r}
overall_mean <- broom.mixed::tidyMCMC(fit_pooling) %>%
filter(term == "mu") %>%
pull(estimate)
df_no_pooling <- fit_no_pooling %>%
tidybayes::gather_draws(mu[i]) %>%
tidybayes::mean_hdi() %>%
ungroup() %>%
mutate(
type = "no_pooling"
) %>%
select(type, .value) %>%
bind_cols(df_n_county)
df_partial_pooling <- fit_partial_pooling %>%
tidybayes::gather_draws(mu[i]) %>%
tidybayes::mean_hdi() %>%
ungroup() %>%
mutate(
type = "partial_pooling"
) %>%
select(type, .value) %>%
bind_cols(df_n_county)
bind_rows(df_no_pooling, df_partial_pooling) %>%
ggplot(
aes(x = n, y = .value, color = type)
) +
geom_point(size = 3) +
geom_hline(yintercept = overall_mean) +
scale_x_log10()
```
- 层级模型可以实现不同分组之间的信息交换
- 分组的均值向整体的均值靠拢(收缩)
- 分组的样本量越小,收缩效应越明显
用我们**四川火锅**记住他们。
```{r, out.width = '85%', echo = FALSE}
knitr::include_graphics(here::here("images", "pooling.jpg"))
```
## 增加预测变量
### 增加楼层floor作为预测变量
$$
\begin{aligned}
y_i &\sim N(\mu_i, \sigma^2) \\
\mu_i &= \alpha_{j[i]} + \beta~\mathtt{floor}_i \\
\alpha_j &\sim \operatorname{normal}(\gamma, \tau) \\
\beta &\sim \operatorname{normal}(0, 2.5)\\
\gamma &\sim \operatorname{normal}(0, 10) \\
\tau &\sim \operatorname{exp}(1) \\
\end{aligned}
$$
不同的县有不同的截距,但有共同的$\beta$,因此被称为**变化的截距**。
```{r}
stan_program <- "
data {
int<lower=1> N;
int<lower=2> J;
int<lower=1, upper=J> county[N];
vector[N] x;
vector[N] y;
}
parameters {
vector[J] alpha;
real beta;
real gamma;
real<lower=0> sigma_y;
real<lower=0> sigma_a;
}
model {
vector[N] mu;
for(i in 1:N) {
mu[i] = alpha[county[i]] + beta * x[i];
}
for(i in 1:N) {
y[i] ~ normal(mu[i], sigma_y);
}
alpha ~ normal(gamma, sigma_a);
gamma ~ normal(0, 10);
beta ~ normal(0, 2.5);
sigma_a ~ exponential(1);
sigma_y ~ exponential(1);
}
"
stan_data <- list(
N = nrow(radon),
J = length(unique(radon$county)),
county = as.numeric(radon$county),
x = radon$floor,
y = radon$log_radon
)
fit_intercept_partial <- stan(model_code = stan_program, data = stan_data)
```
```{r}
summary(fit_intercept_partial)$summary
```
### 截距中增加预测因子
相当于在第二层参数中增加预测因子
$$
\begin{aligned}
y_i &\sim N(\mu_i, ~\sigma) \\
\mu_i &= \alpha_{j[i]} + \beta~\mathtt{floor}_i \\
\alpha_j &\sim \operatorname{normal}(\gamma_0 + \gamma_1~u_j, ~\tau) \\
\beta &\sim \operatorname{normal}(0, 1)\\
\gamma_0 &\sim \operatorname{normal}(0, 2.5)\\
\gamma_1 &\sim \operatorname{normal}(0, 2.5)\\
\tau &\sim \operatorname{exp}(1) \\
\end{aligned}
$$
```{r, warning=FALSE, message=FALSE}
stan_program <- "
data {
int<lower=0> N;
vector[N] y;
int<lower=0, upper=1> x[N];
int<lower=2> J;
int<lower=1, upper=J> county[N];
vector[J] u;
}
parameters {
vector[J] alpha;
real beta;
real gamma0;
real gamma1;
real<lower=0> sigma_a;
real<lower=0> sigma_y;
}
model {
vector[N] mu;
for(i in 1:N) {
mu[i] = alpha[county[i]] + x[i] * beta;
}
for(j in 1:J) {
alpha[j] ~ normal(gamma0 + gamma1 * u[j], sigma_a);
}
y ~ normal(mu, sigma_y);
beta ~ normal(0, 1);
gamma0 ~ normal(0, 2.5);
gamma1 ~ normal(0, 2.5);
sigma_a ~ exponential(1);
sigma_y ~ exponential(1);
}
"
stan_data <- list(
N = nrow(radon),
J = length(unique(radon$county)),
county = as.numeric(radon$county),
x = radon$floor,
y = radon$log_radon,
u = unique(radon$log_uranium)
)
fit_intercept_partial_2 <- stan(model_code = stan_program, data = stan_data)
```
```{r}
summary(fit_intercept_partial_2, c("beta", "gamma0", "gamma1", "sigma_y", "sigma_a"))$summary
```
beta怎么解释?
- 负号,说明楼上比楼下氡含量低
### 变化的截距和斜率
之前模型假定,不管哪个县,所有的房屋一楼和二楼的氡含量的差别是一样的(beta系数是不变的),现在,我们将模型进一步扩展,假定一楼和二楼的氡含量的差别**不是固定不变的,而是随县变化的**,也就说不同县的房屋,一二楼氡含量差别是不同的。
写出变化的截距和斜率模型的数学表达式
$$
\begin{aligned}[t]
y_i &\sim \operatorname{Normal}(\mu_i, \sigma_y) \\
\mu_i &= \alpha_{j[i]} + \beta_{j[i]}~\mathtt{floor}_i \\
\begin{bmatrix}
\alpha_j \\
\beta_j
\end{bmatrix}
& \sim
\operatorname{MVNormal}
\left(
\begin{bmatrix}
\gamma_0^{\alpha} + \gamma_1^{\alpha} ~ u_j \\
\gamma_0^{\beta} + \gamma_1^{\beta} ~ u_j \\
\end{bmatrix}, ~\mathbf S
\right) \\
\mathbf S & = \begin{bmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{bmatrix} \mathbf R \begin{bmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{bmatrix} \\
& = \begin{bmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{bmatrix} \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{bmatrix} \\
\gamma_a & \sim \operatorname{Normal}(0, 4) \\
\gamma_b & \sim \operatorname{Normal}(0, 4) \\
\sigma & \sim \operatorname{Exponential}(1) \\
\sigma_\alpha & \sim \operatorname{Exponential}(1) \\
\sigma_\beta & \sim \operatorname{Exponential}(1) \\
\mathbf R & \sim \operatorname{LKJcorr}(2)
\end{aligned}
$$
- 模型表达式中 $\alpha_j$ 和 $\beta_j$ 不是直接给先验,而是给的层级先验。
- $\alpha_j$ 和 $\beta_j$ 也可能存在关联,常见的有,多元正态分布(Multivariate Gaussian Distribution)
$$
\begin{aligned}[t]
\begin{bmatrix}
\alpha_j \\
\beta_j
\end{bmatrix} &\sim
\operatorname{MVNormal}\left(\begin{bmatrix}\gamma_{\alpha} \\ \gamma_{\beta} \end{bmatrix}, \mathbf S\right) \\
\end{aligned}
$$
### 协方差矩阵(covariance matrix)
`MASS::mvrnorm(n, mu, Sigma)`产生多元高斯分布的随机数,每组随机变量高度相关。
比如,人的身高服从正态分布,人的体重也服从正态分布,同时身高和体重又存在强烈的关联。
- `n`: 随机样本的大小
- `mu`: 多元高斯分布的均值向量
- `Sigma`: 协方差矩阵,主要这里是大写的S (Sigma),提醒我们它是一个矩阵,不是一个数值
```{r}
a <- 3.5
b <- -1
sigma_a <- 1
sigma_b <- 0.5
rho <- -0.7
mu <- c(a, b)
cov_ab <- sigma_a * sigma_b * rho
sigma <- matrix(c(sigma_a^2, cov_ab,
cov_ab, sigma_b^2), ncol = 2)
sigma
```
```{r}
d <- MASS::mvrnorm(1000, mu = mu, Sigma = sigma) %>%
data.frame() %>%
set_names("group_a", "group_b")
head(d)
```
```{r}
d %>%
ggplot(aes(x = group_a)) +
geom_density(
color = "transparent",
fill = "dodgerblue3",
alpha = 1 / 2
) +
stat_function(
fun = dnorm,
args = list(mean = 3.5, sd = 1),
linetype = 2
)
```
```{r}
d %>%
ggplot(aes(x = group_b)) +
geom_density(
color = "transparent",
fill = "dodgerblue3",
alpha = 1 / 2
) +
stat_function(
fun = dnorm,
args = list(mean = -1, sd = 0.5),
linetype = 2
)
```
```{r}
d %>%
ggplot(aes(x = group_a, y = group_b)) +
geom_point() +
stat_ellipse(type = "norm", level = 0.95)
```
### 回到模型
在stan中要给协方差矩阵指定一个先验,[Priors for Covariances](https://mc-stan.org/docs/2_26/stan-users-guide/multivariate-hierarchical-priors-section.html)
```{r, warning=FALSE, message=FALSE}
stan_program <- "
data {
int<lower=0> N;
vector[N] y;
int<lower=0, upper=1> x[N];
int<lower=2> J;
int<lower=1, upper=J> county[N];
vector[J] u;
}
parameters {
vector[J] alpha;
vector[J] beta;
vector[2] gamma_a;
vector[2] gamma_b;
real<lower=0> sigma;
vector<lower=0>[2] tau;
corr_matrix[2] Rho;
}
transformed parameters {
vector[2] YY[J];
for (j in 1:J) {
YY[j] = [alpha[j], beta[j]]';
}
}
model {
vector[N] mu;
vector[2] MU[J];
sigma ~ exponential(1);
tau ~ exponential(1);
Rho ~ lkj_corr(2);
gamma_a ~ normal(0, 2);
gamma_b ~ normal(0, 2);
for(i in 1:N) {
mu[i] = alpha[county[i]] + beta[county[i]] * x[i];
}
for(j in 1:J) {
MU[j, 1] = gamma_a[1] + gamma_a[2] * u[j];
MU[j, 2] = gamma_b[1] + gamma_b[2] * u[j];
}
target += multi_normal_lpdf(YY | MU, quad_form_diag(Rho, tau));
y ~ normal(mu, sigma);
}
"
stan_data <- list(
N = nrow(radon),
J = length(unique(radon$county)),
county = as.numeric(radon$county),
x = radon$floor,
y = radon$log_radon,
u = unique(radon$log_uranium)
)
fit_slope_partial <- stan(model_code = stan_program, data = stan_data)
```
```{r}
summary(fit_slope_partial, c("alpha"))$summary
summary(fit_slope_partial, c("beta"))$summary
summary(fit_slope_partial, c("sigma"))$summary
summary(fit_slope_partial, c("gamma_a", "gamma_b"))$summary
```
```{r}
rstan::traceplot(fit_slope_partial, pars = c("sigma"))
```
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```