-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageoperations.py
1197 lines (907 loc) · 53.1 KB
/
imageoperations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
import logging
import numpy
import pywt
import SimpleITK as sitk
import six
from six.moves import range
logger = logging.getLogger(__name__)
def getMask(mask, **kwargs):
"""
Function to get the correct mask. Includes enforcing a correct pixel data type (UInt32).
Also supports extracting the mask for a segmentation (stored as SimpleITK Vector image) if necessary.
In this case, the mask at index ``label_channel`` is extracted. The resulting 3D volume is then treated as it were a
scalar input volume (i.e. with the region of interest defined by voxels with value matching ``label``).
Finally, checks if the mask volume contains an ROI identified by ``label``. Raises a value error if the label is not
present (including a list of valid labels found).
:param mask: SimpleITK Image object representing the mask. Can be a vector image to allow for overlapping masks.
:param kwargs: keyword arguments. If argument ``label_channel`` is present, this is used to select the channel.
Otherwise label_channel ``0`` is assumed.
:return: SimpleITK.Image with pixel type UInt32 representing the mask volume
"""
global logger
label = kwargs.get('label', 1)
label_channel = kwargs.get('label_channel', 0)
if 'vector' in mask.GetPixelIDTypeAsString().lower():
logger.debug('Mask appears to be a segmentation object (=stored as vector image).')
n_components = mask.GetNumberOfComponentsPerPixel()
assert label_channel < n_components, \
"Mask %i requested, but segmentation object only contains %i objects" % (label_channel, n_components)
logger.info('Extracting mask at index %i', label_channel)
selector = sitk.VectorIndexSelectionCastImageFilter()
selector.SetIndex(label_channel)
mask = selector.Execute(mask)
logger.debug('Force casting mask to UInt32 to ensure correct datatype.')
mask = sitk.Cast(mask, sitk.sitkUInt32)
labels = numpy.unique(sitk.GetArrayFromImage(mask))
if len(labels) == 0:
raise ValueError('No labels found in this mask (i.e. nothing is segmented)!', label, labels[labels != 0])
if label not in labels:
raise ValueError('Label (%g) not present in mask. Choose from %s', label, labels[labels != 0])
return mask
def getBinEdges(parameterValues, **kwargs):
r"""
Calculate and return the histogram using parameterValues (1D array of all segmented voxels in the image).
**Fixed bin width:**
Returns the bin edges, a list of the edges of the calculated bins, length is N(bins) + 1. Bins are defined such, that
the bin edges are equally spaced from zero, and that the leftmost edge :math:`\leq \min(X_{gl})`. These bin edges
represent the half-open ranges of each bin :math:`[\text{lower_edge}, \text{upper_edge})` and result in gray value
discretization as follows:
.. math::
X_{b, i} = \lfloor \frac{X_{gl, i}}{W} \rfloor - \lfloor \frac {\min(X_{gl})}{W} \rfloor + 1
Here, :math:`X_{gl, i}` and :math:`X_{b, i}` are gray level intensities before and after discretization, respectively.
:math:`{W}` is the bin width value (specfied in ``binWidth`` parameter). The first part of the formula ensures that
the bins are equally spaced from 0, whereas the second part ensures that the minimum gray level intensity inside the
ROI after binning is always 1.
In the case where the maximum gray level intensity is equally dividable by the binWidth, i.e.
:math:`\max(X_{gl}) \mod W = 0`, this will result in that maximum gray level being assigned to bin
:math:`[\max(X_{gl}), \max(X_{gl}) + W)`, which is consistent with numpy.digitize, but different from the behaviour
of numpy.histogram, where the final bin has a closed range, including the maximum gray level, i.e.
:math:`[\max(X_{gl}) - W, \max(X_{gl})]`.
.. note::
This method is slightly different from the fixed bin size discretization method described by IBSI. The two most
notable differences are 1) that PyRadiomics uses a floor division (and adds 1), as opposed to a ceiling division and
2) that in PyRadiomics, bins are always equally spaced from 0, as opposed to equally spaced from the minimum
gray level intensity.
*Example: for a ROI with values ranging from 54 to 166, and a bin width of 25, the bin edges will be [50, 75, 100,
125, 150, 175].*
This value can be directly passed to ``numpy.histogram`` to generate a histogram or ``numpy.digitize`` to discretize
the ROI gray values. See also :py:func:`binImage()`.
**Fixed bin Count:**
.. math::
X_{b, i} = \left\{ {\begin{array}{lcl}
\lfloor N_b\frac{(X_{gl, i} - \min(X_{gl})}{\max(X_{gl}) - \min(X_{gl})} \rfloor + 1 &
\mbox{for} & X_{gl, i} < \max(X_{gl}) \\
N_b & \mbox{for} & X_{gl, i} = \max(X_{gl}) \end{array}} \right.
Here, :math:`N_b` is the number of bins to use, as defined in ``binCount``.
References
- Leijenaar RTH, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics:
the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(August):11075.
"""
global logger
binWidth = kwargs.get('binWidth', 25)
binCount = kwargs.get('binCount')
if binCount is not None:
binEdges = numpy.histogram(parameterValues, binCount)[1]
binEdges[-1] += 1 # Ensures that the maximum value is included in the topmost bin when using numpy.digitize
else:
minimum = min(parameterValues)
maximum = max(parameterValues)
# Start binning form the first value lesser than or equal to the minimum value and evenly dividable by binwidth
lowBound = minimum - (minimum % binWidth)
# Add + 2* binwidth to ensure the maximum value is included in the range generated by numpy.arange, and that values
# equal to highbound are binned into a separate bin by numpy.histogram (This ensures ALL bins are half open, as
# numpy.histogram treats the last bin as a closed interval. Moreover, this ensures consistency with numpy.digitize,
# which will assign len(bins) + 1 to values equal to rightmost bin edge, treating all bins as half-open)
highBound = maximum + 2 * binWidth
binEdges = numpy.arange(lowBound, highBound, binWidth)
# if min(parameterValues) % binWidth = 0 and min(parameterValues) = max(parameterValues), binEdges will only contain
# 1 value. If this is the case (flat region) ensure that numpy.histogram creates 1 bin (requires 2 edges). For
# numpy.histogram, a binCount (1) would also suffice, however, this is not accepted by numpy.digitize, which also uses
# binEdges calculated by this function.
if len(binEdges) == 1: # Flat region, ensure that there is 1 bin
binEdges = [binEdges[0] - .5, binEdges[0] + .5] # Simulates binEdges returned by numpy.histogram if bins = 1
logger.debug('Calculated %d bins for bin width %g with edges: %s)', len(binEdges) - 1, binWidth, binEdges)
return binEdges # numpy.histogram(parameterValues, bins=binedges)
def binImage(parameterMatrix, parameterMatrixCoordinates=None, **kwargs):
r"""
Discretizes the parameterMatrix (matrix representation of the gray levels in the ROI) using the binEdges calculated
using :py:func:`getBinEdges`. Only voxels defined by parameterMatrixCoordinates (defining the segmentation) are used
for calculation of histogram and subsequently discretized. Voxels outside segmentation are left unchanged.
"""
global logger
logger.debug('Discretizing gray levels inside ROI')
if parameterMatrixCoordinates is None:
binEdges = getBinEdges(parameterMatrix.flatten(), **kwargs)
parameterMatrix = numpy.digitize(parameterMatrix, binEdges)
else:
binEdges = getBinEdges(parameterMatrix[parameterMatrixCoordinates], **kwargs)
parameterMatrix[parameterMatrixCoordinates] = numpy.digitize(parameterMatrix[parameterMatrixCoordinates], binEdges)
return parameterMatrix, binEdges
def checkMask(imageNode, maskNode, **kwargs):
"""
Checks whether the Region of Interest (ROI) defined in the mask size and dimensions match constraints, specified in
settings. The following checks are performed.
1. Check whether the mask corresponds to the image (i.e. has a similar size, spacing, direction and origin). **N.B.
This check is performed by SimpleITK, if it fails, an error is logged, with additional error information from
SimpleITK logged with level DEBUG (i.e. logging-level has to be set to debug to store this information in the log
file).** The tolerance can be increased using the ``geometryTolerance`` parameter. Alternatively, if the
``correctMask`` parameter is ``True``, PyRadiomics will check if the mask contains a valid ROI (inside image
physical area) and if so, resample the mask to image geometry. See :ref:`radiomics-settings-label` for more info.
2. Check if the label is present in the mask
3. Count the number of dimensions in which the size of the ROI > 1 (i.e. does the ROI represent a single voxel (0), a
line (1), a surface (2) or a volume (3)) and compare this to the minimum number of dimension required (specified in
``minimumROIDimensions``).
4. Optional. Check if there are at least N voxels in the ROI. N is defined in ``minimumROISize``, this test is skipped
if ``minimumROISize = None``.
This function returns a tuple of two items. The first item is the bounding box of the mask. The second item is the
mask that has been corrected by resampling to the input image geometry (if that resampling was successful).
If a check fails, a ValueError is raised. No features will be extracted for this mask.
If the mask passes all tests, this function returns the bounding box, which is used in the :py:func:`cropToTumorMask`
function.
The bounding box is calculated during (1.) and used for the subsequent checks. The bounding box is
calculated by SimpleITK.LabelStatisticsImageFilter() and returned as a tuple of indices: (L_x, U_x, L_y, U_y, L_z,
U_z), where 'L' and 'U' are lower and upper bound, respectively, and 'x', 'y' and 'z' the three image dimensions.
By reusing the bounding box calculated here, calls to SimpleITK.LabelStatisticsImageFilter() are reduced, improving
performance.
Uses the following settings:
- minimumROIDimensions [1]: Integer, range 1-3, specifies the minimum dimensions (1D, 2D or 3D, respectively).
Single-voxel segmentations are always excluded.
- minimumROISize [None]: Integer, > 0, specifies the minimum number of voxels required. Test is skipped if
this parameter is set to None.
.. note::
If the first check fails there are generally 2 possible causes:
1. The image and mask are matched, but there is a slight difference in origin, direction or spacing. The exact
cause, difference and used tolerance are stored with level DEBUG in a log (if enabled). For more information on
setting up logging, see ":ref:`setting up logging <radiomics-logging-label>`" and the helloRadiomics examples
(located in the ``pyradiomics/examples`` folder). This problem can be fixed by changing the global tolerance
(``geometryTolerance`` parameter) or enabling mask correction (``correctMask`` parameter).
2. The image and mask do not match, but the ROI contained within the mask does represent a physical volume
contained within the image. If this is the case, resampling is needed to ensure matching geometry between image
and mask before features can be extracted. This can be achieved by enabling mask correction using the
``correctMask`` parameter.
"""
global logger
correctedMask = None
label = kwargs.get('label', 1)
minDims = kwargs.get('minimumROIDimensions', 2)
minSize = kwargs.get('minimumROISize', None)
logger.debug('Checking mask with label %d', label)
logger.debug('Calculating bounding box')
# Determine bounds
lsif = sitk.LabelStatisticsImageFilter()
try:
lsif.Execute(imageNode, maskNode)
# If lsif fails, and mask is corrected, it includes a check whether the label is present. Therefore, perform
# this test here only if lsif does not fail on the first attempt.
if label not in lsif.GetLabels():
raise ValueError('Label (%g) not present in mask' % label)
except RuntimeError as e:
# If correctMask = True, try to resample the mask to the image geometry, otherwise return None ("fail")
if not kwargs.get('correctMask', False):
if "Both images for LabelStatisticsImageFilter don't match type or dimension!" in e.args[0]:
logger.debug('Additional information on error.', exc_info=True)
raise ValueError('Image/Mask datatype or size mismatch. Potential fix: enable correctMask, see '
'Documentation:Usage:Customizing the Extraction:Settings:correctMask for more information')
elif "Inputs do not occupy the same physical space!" in e.args[0]:
logger.debug('Additional information on error.', exc_info=True)
raise ValueError('Image/Mask geometry mismatch. Potential fix: increase tolerance using geometryTolerance, '
'see Documentation:Usage:Customizing the Extraction:Settings:geometryTolerance for more '
'information')
else:
raise e # unhandled error
logger.warning('Image/Mask geometry mismatch, attempting to correct Mask')
correctedMask = _correctMask(imageNode, maskNode, **kwargs) # Raises Value error if ROI outside image physical space
# Resampling successful, try to calculate boundingbox
try:
lsif.Execute(imageNode, correctedMask)
except RuntimeError:
logger.debug('Bounding box calculation with resampled mask failed', exc_info=True)
raise ValueError('Calculation of bounding box failed, for more information run with DEBUG logging and check log')
# LBound and UBound of the bounding box, as (L_X, U_X, L_Y, U_Y, L_Z, U_Z)
boundingBox = numpy.array(lsif.GetBoundingBox(label))
logger.debug('Checking minimum number of dimensions requirements (%d)', minDims)
ndims = numpy.sum((boundingBox[1::2] - boundingBox[0::2] + 1) > 1) # UBound - LBound + 1 = Size
if ndims == 0:
raise ValueError('mask only contains 1 segmented voxel! Cannot extract features for a single voxel.')
elif ndims < minDims:
raise ValueError('mask has too few dimensions (number of dimensions %d, minimum required %d)' % (ndims, minDims))
if minSize is not None:
logger.debug('Checking minimum size requirements (minimum size: %d)', minSize)
roiSize = lsif.GetCount(label)
if roiSize <= minSize:
raise ValueError('Size of the ROI is too small (minimum size: %g, ROI size: %g' % (minSize, roiSize))
return boundingBox, correctedMask
def _correctMask(imageNode, maskNode, **kwargs):
"""
If the mask geometry does not match the image geometry, this function can be used to resample the mask to the image
physical space.
First, the mask is checked for a valid ROI (i.e. maskNode contains an ROI with the given label value, which does not
include areas outside of the physical image bounds).
If the ROI is valid, the maskNode is resampled using the imageNode as a reference image and a nearest neighbor
interpolation.
If the ROI is valid, the resampled mask is returned, otherwise ``None`` is returned.
"""
global logger
logger.debug('Resampling mask to image geometry')
_checkROI(imageNode, maskNode, **kwargs) # Raises a value error if ROI is invalid
rif = sitk.ResampleImageFilter()
rif.SetReferenceImage(imageNode)
rif.SetInterpolator(sitk.sitkNearestNeighbor)
logger.debug('Resampling...')
return rif.Execute(maskNode)
def _checkROI(imageNode, maskNode, **kwargs):
"""
Check whether maskNode contains a valid ROI defined by label:
1. Check whether the label value is present in the maskNode.
2. Check whether the ROI defined by the label does not include an area outside the physical area of the image.
For the second check, a tolerance of 1e-3 is allowed.
If the ROI is valid, the bounding box (lower bounds, followd by size in all dimensions (X, Y, Z ordered)) is
returned. Otherwise, a ValueError is raised.
"""
global logger
label = kwargs.get('label', 1)
logger.debug('Checking ROI validity')
# Determine bounds of cropped volume in terms of original Index coordinate space
lssif = sitk.LabelShapeStatisticsImageFilter()
lssif.Execute(maskNode)
logger.debug('Checking if label %d is persent in the mask', label)
if label not in lssif.GetLabels():
raise ValueError('Label (%d) not present in mask', label)
# LBound and size of the bounding box, as (L_X, L_Y, [L_Z], S_X, S_Y, [S_Z])
bb = numpy.array(lssif.GetBoundingBox(label))
Nd = maskNode.GetDimension()
# Determine if the ROI is within the physical space of the image
logger.debug('Comparing physical space of bounding box to physical space of image')
# Step 1: Get the origin and UBound corners of the bounding box in physical space
# The additional 0.5 represents the difference between the voxel center and the voxel corner
# Upper bound index of ROI = bb[:Nd] + bb[Nd:] - 1 (LBound + Size - 1), .5 is added to get corner
ROIBounds = (maskNode.TransformContinuousIndexToPhysicalPoint(bb[:Nd] - .5), # Origin
maskNode.TransformContinuousIndexToPhysicalPoint(bb[:Nd] + bb[Nd:] - 0.5)) # UBound
# Step 2: Translate the ROI physical bounds to the image coordinate space
ROIBounds = (imageNode.TransformPhysicalPointToContinuousIndex(ROIBounds[0]), # Origin
imageNode.TransformPhysicalPointToContinuousIndex(ROIBounds[1]))
logger.debug('ROI bounds (image coordinate space): %s', ROIBounds)
# Check if any of the ROI bounds are outside the image indices (i.e. -0.5 < ROI < Im.Size -0.5)
# The additional 0.5 is to allow for different spacings (defines the edges, not the centers of the edge-voxels
tolerance = 1e-3 # Define a tolerance to correct for machine precision errors
if numpy.any(numpy.min(ROIBounds, axis=0) < (- .5 - tolerance)) or \
numpy.any(numpy.max(ROIBounds, axis=0) > (numpy.array(imageNode.GetSize()) - .5 + tolerance)):
raise ValueError('Bounding box of ROI is larger than image space:\n\t'
'ROI bounds (x, y, z image coordinate space) %s\n\tImage Size %s' %
(ROIBounds, imageNode.GetSize()))
logger.debug('ROI valid, calculating resampling grid')
return bb
def cropToTumorMask(imageNode, maskNode, boundingBox, **kwargs):
"""
Create a sitkImage of the segmented region of the image based on the input label.
Create a sitkImage of the labelled region of the image, cropped to have a
cuboid shape equal to the ijk boundaries of the label.
:param boundingBox: The bounding box used to crop the image. This is the bounding box as returned by
:py:func:`checkMask`.
:param label: [1], value of the label, onto which the image and mask must be cropped.
:return: Cropped image and mask (SimpleITK image instances).
"""
global logger
padDistance = kwargs.get('padDistance', 0)
size = numpy.array(maskNode.GetSize())
ijkMinBounds = boundingBox[0::2] - padDistance
ijkMaxBounds = size - boundingBox[1::2] - padDistance - 1
# Ensure cropped area is not outside original image bounds
ijkMinBounds = numpy.maximum(ijkMinBounds, 0)
ijkMaxBounds = numpy.maximum(ijkMaxBounds, 0)
# Crop Image
logger.debug('Cropping to size %s', (boundingBox[1::2] - boundingBox[0::2]) + 1)
cif = sitk.CropImageFilter()
try:
cif.SetLowerBoundaryCropSize(ijkMinBounds)
cif.SetUpperBoundaryCropSize(ijkMaxBounds)
except TypeError:
# newer versions of SITK/python want a tuple or list
cif.SetLowerBoundaryCropSize(ijkMinBounds.tolist())
cif.SetUpperBoundaryCropSize(ijkMaxBounds.tolist())
croppedImageNode = cif.Execute(imageNode)
croppedMaskNode = cif.Execute(maskNode)
return croppedImageNode, croppedMaskNode
def resampleImage(imageNode, maskNode, **kwargs):
"""
Resamples image and mask to the specified pixel spacing (The default interpolator is Bspline).
Resampling can be enabled using the settings 'interpolator' and 'resampledPixelSpacing' in the parameter file or as
part of the settings passed to the feature extractor. See also
:ref:`feature extractor <radiomics-featureextractor-label>`.
'imageNode' and 'maskNode' are SimpleITK Objects, and 'resampledPixelSpacing' is the output pixel spacing (sequence of
3 elements).
If only in-plane resampling is required, set the output pixel spacing for the out-of-plane dimension (usually the last
dimension) to 0. Spacings with a value of 0 are replaced by the spacing as it is in the original mask.
Only part of the image and labelmap are resampled. The resampling grid is aligned to the input origin, but only voxels
covering the area of the image ROI (defined by the bounding box) and the padDistance are resampled. This results in a
resampled and partially cropped image and mask. Additional padding is required as some filters also sample voxels
outside of segmentation boundaries. For feature calculation, image and mask are cropped to the bounding box without
any additional padding, as the feature classes do not need the gray level values outside the segmentation.
The resampling grid is calculated using only the input mask. Even when image and mask have different directions, both
the cropped image and mask will have the same direction (equal to direction of the mask). Spacing and size are
determined by settings and bounding box of the ROI.
.. note::
Before resampling the bounds of the non-padded ROI are compared to the bounds. If the ROI bounding box includes
areas outside of the physical space of the image, an error is logged and (None, None) is returned. No features will
be extracted. This enables the input image and mask to have different geometry, so long as the ROI defines an area
within the image.
.. note::
The additional padding is adjusted, so that only the physical space within the mask is resampled. This is done to
prevent resampling outside of the image. Please note that this assumes the image and mask to image the same physical
space. If this is not the case, it is possible that voxels outside the image are included in the resampling grid,
these will be assigned a value of 0. It is therefore recommended, but not enforced, to use an input mask which has
the same or a smaller physical space than the image.
"""
global logger
resampledPixelSpacing = kwargs['resampledPixelSpacing']
interpolator = kwargs.get('interpolator', sitk.sitkBSpline)
padDistance = kwargs.get('padDistance', 5)
logger.debug('Resampling image and mask')
if imageNode is None or maskNode is None:
raise ValueError('Requires both image and mask to resample')
maskSpacing = numpy.array(maskNode.GetSpacing())
imageSpacing = numpy.array(imageNode.GetSpacing())
Nd_resampled = len(resampledPixelSpacing)
Nd_mask = len(maskSpacing)
assert Nd_resampled == Nd_mask, \
'Wrong dimensionality (%i-D) of resampledPixelSpacing!, %i-D required' % (Nd_resampled, Nd_mask)
# If spacing for a direction is set to 0, use the original spacing (enables "only in-slice" resampling)
logger.debug('Where resampled spacing is set to 0, set it to the original spacing (mask)')
resampledPixelSpacing = numpy.array(resampledPixelSpacing)
resampledPixelSpacing = numpy.where(resampledPixelSpacing == 0, maskSpacing, resampledPixelSpacing)
# Check if the maskNode contains a valid ROI. If ROI is valid, the bounding box needed to calculate the resampling
# grid is returned.
bb = _checkROI(imageNode, maskNode, **kwargs)
# Do not resample in those directions where labelmap spans only one slice.
maskSize = numpy.array(maskNode.GetSize())
resampledPixelSpacing = numpy.where(bb[Nd_mask:] != 1, resampledPixelSpacing, maskSpacing)
# If current spacing is equal to resampledPixelSpacing, no interpolation is needed
# Tolerance = 1e-5 + 1e-8*abs(resampledSpacing)
logger.debug('Comparing resampled spacing to original spacing (image and mask')
if numpy.allclose(maskSpacing, resampledPixelSpacing) and numpy.allclose(imageSpacing, resampledPixelSpacing):
logger.info('New spacing equal to old, no resampling required, applying pre-crop')
low_up_bb = numpy.empty(Nd_mask * 2, dtype=int)
low_up_bb[::2] = bb[:3]
low_up_bb[1::2] = bb[:3] + bb[3:] - 1
return cropToTumorMask(imageNode, maskNode, low_up_bb, **kwargs)
spacingRatio = maskSpacing / resampledPixelSpacing
# Determine bounds of cropped volume in terms of new Index coordinate space,
# round down for lowerbound and up for upperbound to ensure entire segmentation is captured (prevent data loss)
# Pad with an extra .5 to prevent data loss in case of upsampling. For Ubound this is (-1 + 0.5 = -0.5)
bbNewLBound = numpy.floor((bb[:Nd_mask] - 0.5) * spacingRatio - padDistance)
bbNewUBound = numpy.ceil((bb[:Nd_mask] + bb[Nd_mask:] - 0.5) * spacingRatio + padDistance)
# Ensure resampling is not performed outside bounds of original image
maxUbound = numpy.ceil(maskSize * spacingRatio) - 1
bbNewLBound = numpy.where(bbNewLBound < 0, 0, bbNewLBound)
bbNewUBound = numpy.where(bbNewUBound > maxUbound, maxUbound, bbNewUBound)
# Calculate the new size. Cast to int to prevent error in sitk.
newSize = numpy.array(bbNewUBound - bbNewLBound + 1, dtype='int').tolist()
# Determine continuous index of bbNewLBound in terms of the original Index coordinate space
bbOriginalLBound = bbNewLBound / spacingRatio
# Origin is located in center of first voxel, e.g. 1/2 of the spacing
# from Corner, which corresponds to 0 in the original Index coordinate space.
# The new spacing will be in 0 the new Index coordinate space. Here we use continuous
# index to calculate where the new 0 of the new Index coordinate space (of the original volume
# in terms of the original spacing, and add the minimum bounds of the cropped area to
# get the new Index coordinate space of the cropped volume in terms of the original Index coordinate space.
# Then use the ITK functionality to bring the continuous index into the physical space (mm)
newOriginIndex = numpy.array(.5 * (resampledPixelSpacing - maskSpacing) / maskSpacing)
newCroppedOriginIndex = newOriginIndex + bbOriginalLBound
newOrigin = maskNode.TransformContinuousIndexToPhysicalPoint(newCroppedOriginIndex)
imagePixelType = imageNode.GetPixelID()
maskPixelType = maskNode.GetPixelID()
direction = numpy.array(maskNode.GetDirection())
logger.info('Applying resampling from spacing %s and size %s to spacing %s and size %s',
maskSpacing, maskSize, resampledPixelSpacing, newSize)
try:
if isinstance(interpolator, six.string_types):
interpolator = getattr(sitk, interpolator)
except Exception:
logger.warning('interpolator "%s" not recognized, using sitkBSpline', interpolator)
interpolator = sitk.sitkBSpline
rif = sitk.ResampleImageFilter()
rif.SetOutputSpacing(resampledPixelSpacing)
rif.SetOutputDirection(direction)
rif.SetSize(newSize)
rif.SetOutputOrigin(newOrigin)
logger.debug('Resampling image')
rif.SetOutputPixelType(imagePixelType)
rif.SetInterpolator(interpolator)
resampledImageNode = rif.Execute(imageNode)
logger.debug('Resampling mask')
rif.SetOutputPixelType(maskPixelType)
rif.SetInterpolator(sitk.sitkNearestNeighbor)
resampledMaskNode = rif.Execute(maskNode)
return resampledImageNode, resampledMaskNode
def normalizeImage(image, **kwargs):
r"""
Normalizes the image by centering it at the mean with standard deviation. Normalization is based on all gray values in
the image, not just those inside the segementation.
:math:`f(x) = \frac{s(x - \mu_x)}{\sigma_x}`
Where:
- :math:`x` and :math:`f(x)` are the original and normalized intensity, respectively.
- :math:`\mu_x` and :math:`\sigma_x` are the mean and standard deviation of the image instensity values.
- :math:`s` is an optional scaling defined by ``scale``. By default, it is set to 1.
Optionally, outliers can be removed, in which case values for which :math:`x > \mu_x + n\sigma_x` or
:math:`x < \mu_x - n\sigma_x` are set to :math:`\mu_x + n\sigma_x` and :math:`\mu_x - n\sigma_x`, respectively.
Here, :math:`n>0` and defined by ``outliers``. This, in turn, is controlled by the ``removeOutliers`` parameter.
Removal of outliers is done after the values of the image are normalized, but before ``scale`` is applied.
"""
global logger
scale = kwargs.get('normalizeScale', 1)
outliers = kwargs.get('removeOutliers')
logger.debug('Normalizing image with scale %d', scale)
image = sitk.Normalize(image)
if outliers is not None:
logger.debug('Removing outliers > %g standard deviations', outliers)
imageArr = sitk.GetArrayFromImage(image)
imageArr[imageArr > outliers] = outliers
imageArr[imageArr < -outliers] = -outliers
newImage = sitk.GetImageFromArray(imageArr)
newImage.CopyInformation(image)
image = newImage
image *= scale
return image
def resegmentMask(imageNode, maskNode, **kwargs):
r"""
Resegment the Mask based on the range specified by the threshold(s) in ``resegmentRange``. Either 1 or 2 thresholds
can be defined. In case of 1 threshold, all values equal to or higher than that threshold are included. If there are
2 thresholds, all voxels with a value inside the closed-range defined by these thresholds is included
(i.e. a voxels is included if :math:`T_{lower} \leq X_gl \leq T_{upper}`).
The resegmented mask is therefore always equal or smaller in size than the original mask.
In the case where either resegmentRange or resegmentMode contains illigal values, a ValueError is raised.
There are 3 modes for defining the threshold:
1. absolute (default): The values in resegmentRange define as absolute values (i.e. corresponding to the gray values
in the image
2. relative: The values in resegmentRange define the threshold as relative to the maximum value found in the ROI.
(e.g. 0.5 indicates a threshold at 50% of maximum gray value)
3. sigma: The threshold is defined as the number of sigma from the mean. (e.g. resegmentRange [-3, 3] will include
all voxels that have a value that differs 3 or less standard deviations from the mean).
"""
global logger
resegmentRange = kwargs['resegmentRange']
resegmentMode = kwargs.get('resegmentMode', 'absolute')
label = kwargs.get('label', 1)
if resegmentRange is None:
raise ValueError('resegmentRange is None.')
if len(resegmentRange) == 0 or len(resegmentRange) > 2:
raise ValueError('Length %i is not allowed for resegmentRange' % len(resegmentRange))
logger.debug('Resegmenting mask (range %s, mode %s)', resegmentRange, resegmentMode)
im_arr = sitk.GetArrayFromImage(imageNode)
ma_arr = (sitk.GetArrayFromImage(maskNode) == label) # boolean array
oldSize = numpy.sum(ma_arr)
if resegmentMode == 'absolute':
logger.debug('Resegmenting in absolute mode')
thresholds = sorted(resegmentRange)
elif resegmentMode == 'relative':
max_gl = numpy.max(im_arr[ma_arr])
logger.debug('Resegmenting in relative mode, max %g', max_gl)
thresholds = [max_gl * th for th in sorted(resegmentRange)]
elif resegmentMode == 'sigma':
mean_gl = numpy.mean(im_arr[ma_arr])
sd_gl = numpy.std(im_arr[ma_arr])
logger.debug('Resegmenting in sigma mode, mean %g, std %g', mean_gl, sd_gl)
thresholds = [mean_gl + sd_gl * th for th in sorted(resegmentRange)]
else:
raise ValueError('Resegment mode %s not recognized.' % resegmentMode)
# Apply lower threshold
logger.debug('Applying lower threshold (%g)', thresholds[0])
ma_arr[ma_arr] = im_arr[ma_arr] >= thresholds[0]
# If 2 thresholds are defined, also apply an upper threshold
if len(thresholds) == 2:
logger.debug('Applying upper threshold (%g)', thresholds[1])
ma_arr[ma_arr] = im_arr[ma_arr] <= thresholds[1]
roiSize = numpy.sum(ma_arr)
if roiSize <= 1:
raise ValueError("Resegmentation excluded too many voxels with label %i (retained %i voxel(s))! "
"Cannot extract features" % (label, roiSize))
# Transform the boolean array back to an image with the correct voxels set to the label value
newMask_arr = numpy.zeros(ma_arr.shape, dtype='int')
newMask_arr[ma_arr] = label
newMask = sitk.GetImageFromArray(newMask_arr)
newMask.CopyInformation(maskNode)
logger.debug('Resegmentation complete, new size: %d voxels (excluded %d voxels)', roiSize, oldSize - roiSize)
return newMask
def getOriginalImage(inputImage, inputMask, **kwargs):
"""
This function does not apply any filter, but returns the original image. This function is needed to
dynamically expose the original image as a valid image type.
:return: Yields original image, 'original' and ``kwargs``
"""
global logger
logger.debug('Yielding original image')
yield inputImage, 'original', kwargs
def getLoGImage(inputImage, inputMask, **kwargs):
r"""
Applies a Laplacian of Gaussian filter to the input image and yields a derived image for each sigma value specified.
A Laplacian of Gaussian image is obtained by convolving the image with the second derivative (Laplacian) of a Gaussian
kernel.
The Gaussian kernel is used to smooth the image and is defined as
.. math::
G(x, y, z, \sigma) = \frac{1}{(\sigma \sqrt{2 \pi})^3}e^{-\frac{x^2 + y^2 + z^2}{2\sigma^2}}
The Gaussian kernel is convolved by the laplacian kernel :math:`\nabla^2G(x, y, z)`, which is sensitive to areas with
rapidly changing intensities, enhancing edges. The width of the filter in the Gaussian kernel is determined by
:math:`\sigma` and can be used to emphasize more fine (low :math:`\sigma` values) or coarse (high :math:`\sigma`
values) textures.
.. warning::
The LoG filter implemented in PyRadiomics is a 3D LoG filter, and therefore requires 3D input. Features using a
single slice (2D) segmentation can still be extracted, but the input image *must* be a 3D image, with a minimum size
in all dimensions :math:`\geq \sigma`. If input image is too small, a warning is logged and :math:`\sigma` value is
skipped. Moreover, the image size *must* be at least 4 voxels in each dimensions, if this constraint is not met, no
LoG derived images can be generated.
Following settings are possible:
- sigma: List of floats or integers, must be greater than 0. Filter width (mm) to use for the Gaussian kernel
(determines coarseness).
.. warning::
Setting for sigma must be provided. If omitted, no LoG image features are calculated and the function
will return an empty dictionary.
Returned filter name reflects LoG settings:
log-sigma-<sigmaValue>-3D.
References:
- `SimpleITK Doxygen documentation
<https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1LaplacianRecursiveGaussianImageFilter.html>`_
- `ITK Doxygen documentation <https://itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html>`_
- `<https://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian>`_
:return: Yields log filtered image for each specified sigma, corresponding image type name and ``kwargs`` (customized
settings).
"""
global logger
logger.debug('Generating LoG images')
# Check if size of image is > 4 in all 3D directions (otherwise, LoG filter will fail)
size = numpy.array(inputImage.GetSize())
spacing = numpy.array(inputImage.GetSpacing())
if numpy.min(size) < 4:
logger.warning('Image too small to apply LoG filter, size: %s', size)
return
sigmaValues = kwargs.get('sigma', [])
for sigma in sigmaValues:
logger.info('Computing LoG with sigma %g', sigma)
if sigma > 0.0:
if numpy.all(size >= numpy.ceil(sigma / spacing) + 1):
lrgif = sitk.LaplacianRecursiveGaussianImageFilter()
lrgif.SetNormalizeAcrossScale(True)
lrgif.SetSigma(sigma)
inputImageName = 'log-sigma-%s-mm-3D' % (str(sigma).replace('.', '-'))
logger.debug('Yielding %s image', inputImageName)
yield lrgif.Execute(inputImage), inputImageName, kwargs
else:
logger.warning('applyLoG: sigma(%g)/spacing(%s) + 1 must be greater than the size(%s) of the inputImage',
sigma,
spacing,
size)
else:
logger.warning('applyLoG: sigma must be greater than 0.0: %g', sigma)
def getWaveletImage(inputImage, inputMask, **kwargs):
"""
Applies wavelet filter to the input image and yields the decompositions and the approximation.
Following settings are possible:
- start_level [0]: integer, 0 based level of wavelet which should be used as first set of decompositions
from which a signature is calculated
- level [1]: integer, number of levels of wavelet decompositions from which a signature is calculated.
- wavelet ["coif1"]: string, type of wavelet decomposition. Enumerated value, validated against possible values
present in the ``pyWavelet.wavelist()``. Current possible values (pywavelet version 0.4.0) (where an
aditional number is needed, range of values is indicated in []):
- haar
- dmey
- sym[2-20]
- db[1-20]
- coif[1-5]
- bior[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]
- rbio[1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6.8]
Returned filter name reflects wavelet type:
wavelet[level]-<decompositionName>
N.B. only levels greater than the first level are entered into the name.
:return: Yields each wavelet decomposition and final approximation, corresponding imaget type name and ``kwargs``
(customized settings).
"""
global logger
logger.debug('Generating Wavelet images')
Nd = inputImage.GetDimension()
axes = list(range(Nd - 1, -1, -1))
if kwargs.get('force2D', False):
axes.remove(kwargs.get('force2Ddimension', 0))
approx, ret = _swt3(inputImage, tuple(axes), **kwargs)
for idx, wl in enumerate(ret, start=1):
for decompositionName, decompositionImage in wl.items():
logger.info('Computing Wavelet %s', decompositionName)
if idx == 1:
inputImageName = 'wavelet-%s' % (decompositionName)
else:
inputImageName = 'wavelet%s-%s' % (idx, decompositionName)
logger.debug('Yielding %s image', inputImageName)
yield decompositionImage, inputImageName, kwargs
if len(ret) == 1:
inputImageName = 'wavelet-%s' % ('L' * len(axes))
else:
inputImageName = 'wavelet%s-%s' % (len(ret), ('L' * len(axes)))
logger.debug('Yielding approximation (%s) image', inputImageName)
yield approx, inputImageName, kwargs
def _swt3(inputImage, axes, **kwargs): # Stationary Wavelet Transform 3D
wavelet = kwargs.get('wavelet', 'coif1')
level = kwargs.get('level', 1)
start_level = kwargs.get('start_level', 0)
matrix = sitk.GetArrayFromImage(inputImage) # This function gets a numpy array from the SimpleITK Image "inputImage"
matrix = numpy.asarray(matrix) # The function np.asarray converts "matrix" (which could be also a tuple) into an array.
original_shape = matrix.shape
# original_shape becomes a tuple (?,?,?) containing the number of rows, columns, and slices of the image
# this is of course dependent on the number of dimensions, but the same principle holds
padding = tuple([(0, 1 if dim % 2 != 0 else 0) for dim in original_shape])
# padding is necessary because of pywt.swtn (see function Notes)
data = matrix.copy() # creates a modifiable copy of "matrix" and we call it "data"
data = numpy.pad(data, padding, 'wrap') # padding the tuple "padding" previously computed
if not isinstance(wavelet, pywt.Wavelet):
wavelet = pywt.Wavelet(wavelet)
for i in range(0, start_level): # if start_level = 0 (default) this for loop never gets executed
# compute all decompositions and saves them in "dec" dict
dec = pywt.swtn(data, wavelet, level=1, start_level=0, axes=axes)[0]
# copies in "data" just the "aaa" decomposition (i.e. approximation; No of consecutive 'a's = len(axes))
data = dec['a' * len(axes)].copy()
ret = [] # initialize empty list
for i in range(start_level, start_level + level):
# compute the n-dimensional stationary wavelet transform
dec = pywt.swtn(data, wavelet, level=1, start_level=0, axes=axes)[0]
# Copy the approximation into data (approximation in output / input for next levels)
data = dec['a' * len(axes)].copy()
dec_im = {} # initialize empty dict
for decName, decImage in six.iteritems(dec):
# Returning the approximiation is done only for the last loop,
# and is handled separately below (by building it from `data`)
# There for, skip it here
if decName == 'a' * len(axes):
continue
decTemp = decImage.copy()
decTemp = decTemp[tuple(slice(None, -1 if dim % 2 != 0 else None) for dim in original_shape)]
sitkImage = sitk.GetImageFromArray(decTemp)
sitkImage.CopyInformation(inputImage)
dec_im[str(decName).replace('a', 'L').replace('d', 'H')] = sitkImage
# modifies 'a' with 'L' (Low-pass filter) and 'd' with 'H' (High-pass filter)
ret.append(dec_im) # appending all the filtered sitk images (stored in "dec_im") to the "ret" list
data = data[tuple(slice(None, -1 if dim % 2 != 0 else None) for dim in original_shape)]
approximation = sitk.GetImageFromArray(data)
approximation.CopyInformation(inputImage)
return approximation, ret # returns the approximation and the detail (ret) coefficients of the stationary wavelet decomposition
def getSquareImage(inputImage, inputMask, **kwargs):
r"""
Computes the square of the image intensities.
Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.
:math:`f(x) = (cx)^2,\text{ where } c=\displaystyle\frac{1}{\sqrt{\max(|x|)}}`
Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.
:return: Yields square filtered image, 'square' and ``kwargs`` (customized settings).
"""
global logger
im = sitk.GetArrayFromImage(inputImage)
im = im.astype('float64')
coeff = 1 / numpy.sqrt(numpy.max(numpy.abs(im)))
im = (coeff * im) ** 2
im = sitk.GetImageFromArray(im)
im.CopyInformation(inputImage)
logger.debug('Yielding square image')
yield im, 'square', kwargs
def getSquareRootImage(inputImage, inputMask, **kwargs):
r"""
Computes the square root of the absolute value of image intensities.
Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.
:math:`f(x) = \left\{ {\begin{array}{lcl}
\sqrt{cx} & \mbox{for} & x \ge 0 \\
-\sqrt{-cx} & \mbox{for} & x < 0\end{array}} \right.,\text{ where } c=\max(|x|)`
Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.
:return: Yields square root filtered image, 'squareroot' and ``kwargs`` (customized settings).
"""
global logger
im = sitk.GetArrayFromImage(inputImage)
im = im.astype('float64')
coeff = numpy.max(numpy.abs(im))
im[im > 0] = numpy.sqrt(im[im > 0] * coeff)
im[im < 0] = - numpy.sqrt(-im[im < 0] * coeff)
im = sitk.GetImageFromArray(im)
im.CopyInformation(inputImage)
logger.debug('Yielding squareroot image')
yield im, 'squareroot', kwargs
def getLogarithmImage(inputImage, inputMask, **kwargs):
r"""
Computes the logarithm of the absolute value of the original image + 1.
Resulting values are rescaled on the range of the initial original image and negative intensities are made
negative in resultant filtered image.
:math:`f(x) = \left\{ {\begin{array}{lcl}
c\log{(x + 1)} & \mbox{for} & x \ge 0 \\
-c\log{(-x + 1)} & \mbox{for} & x < 0\end{array}} \right. \text{, where } c=\frac{\max(|x|)}{\log(\max(|x|) + 1)}`
Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.
:return: Yields logarithm filtered image, 'logarithm' and ``kwargs`` (customized settings)
"""
global logger
im = sitk.GetArrayFromImage(inputImage)
im = im.astype('float64')
im_max = numpy.max(numpy.abs(im))
im[im > 0] = numpy.log(im[im > 0] + 1)
im[im < 0] = - numpy.log(- (im[im < 0] - 1))
im = im * (im_max / numpy.max(numpy.abs(im)))
im = sitk.GetImageFromArray(im)
im.CopyInformation(inputImage)
logger.debug('Yielding logarithm image')
yield im, 'logarithm', kwargs
def getExponentialImage(inputImage, inputMask, **kwargs):
r"""
Computes the exponential of the original image.
Resulting values are rescaled on the range of the initial original image.
:math:`f(x) = e^{cx},\text{ where } c=\displaystyle\frac{\log(\max(|x|))}{\max(|x|)}`
Where :math:`x` and :math:`f(x)` are the original and filtered intensity, respectively.
:return: Yields exponential filtered image, 'exponential' and ``kwargs`` (customized settings)
"""
global logger
im = sitk.GetArrayFromImage(inputImage)
im = im.astype('float64')
im_max = numpy.max(numpy.abs(im))
coeff = numpy.log(im_max) / im_max
im = numpy.exp(coeff * im)
im = sitk.GetImageFromArray(im)
im.CopyInformation(inputImage)
logger.debug('Yielding exponential image')
yield im, 'exponential', kwargs
def getGradientImage(inputImage, inputMask, **kwargs):
r"""
Compute and return the Gradient Magnitude in the image.
By default, takes into account the image spacing, this can be switched off by specifying
``gradientUseSpacing = False``.
References:
- `SimpleITK documentation
<https://itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1GradientMagnitudeImageFilter.html>`_
- `<https://en.wikipedia.org/wiki/Image_gradient>`_
"""
gmif = sitk.GradientMagnitudeImageFilter()
gmif.SetUseImageSpacing(kwargs.get('gradientUseSpacing', True))
im = gmif.Execute(inputImage)
yield im, 'gradient', kwargs