-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathRetrieval.py
452 lines (347 loc) · 18.1 KB
/
Retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import os
import sys
import math
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import utils
from utils.checkpointer import Checkpointer
from utils.hdfs_io import hmkdir
from dataset import create_dataset, create_sampler, create_loader, build_tokenizer
from scheduler import create_scheduler
from optim import create_optimizer
def train(model, data_loader, optimizer, tokenizer, epoch, device, scheduler, config):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itc', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
accumulate_steps = int(config.get('accumulate_steps', 1))
for i, (image, text, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
text_input = tokenizer(text, padding='longest', max_length=config['max_tokens'], return_tensors="pt").to(device)
loss_itc, loss_itm = model(image, text_input.input_ids, text_input.attention_mask, idx=idx)
loss = loss_itc + loss_itm
if accumulate_steps > 1:
loss = loss / accumulate_steps
# backward
loss.backward()
if (i+1) % accumulate_steps == 0:
# update
optimizer.step()
scheduler.step()
optimizer.zero_grad()
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(loss_itc=loss_itc.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print('Computing features for evaluation...')
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = config['batch_size_test_text'] # 256
text_feats = [] # in fact, text_embeds
text_embeds = [] # in fact, text_feats...
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i: min(num_text, i + text_bs)]
text_input = tokenizer(text, padding='max_length', truncation=True, max_length=config['max_tokens'],
return_tensors="pt").to(device)
text_feat = model.get_text_embeds(text_input.input_ids, text_input.attention_mask)
text_embed = model.get_features(text_embeds=text_feat)
text_feats.append(text_feat)
text_atts.append(text_input.attention_mask)
text_embeds.append(text_embed)
text_embeds = torch.cat(text_embeds, dim=0)
text_atts = torch.cat(text_atts, dim=0)
text_feats = torch.cat(text_feats, dim=0)
image_feats = []
image_embeds = []
for image, img_id in data_loader:
image = image.to(device)
image_feat, _ = model.get_vision_embeds(image)
image_embed = model.get_features(image_embeds=image_feat)
image_feats.append(image_feat)
image_embeds.append(image_embed)
image_feats = torch.cat(image_feats, dim=0)
image_embeds = torch.cat(image_embeds, dim=0)
sims_matrix = image_embeds @ text_embeds.t()
score_matrix_i2t = torch.full((len(data_loader.dataset.image), len(texts)), -100.0).to(device)
num_tasks = utils.get_world_size()
rank = utils.get_rank()
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
encoder_output = image_feats[start + i].repeat(config['k_test'], 1, 1)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.get_cross_embeds(image_embeds=encoder_output, image_atts=encoder_att,
text_embeds=text_feats[topk_idx], text_atts=text_atts[topk_idx])
score = model.itm_head(output[:, 0, :])[:, 1]
score_matrix_i2t[start + i, topk_idx] = score
sims_matrix = sims_matrix.t()
score_matrix_t2i = torch.full((len(texts), len(data_loader.dataset.image)), -100.0).to(device)
step = sims_matrix.size(0)//num_tasks + 1
start = rank*step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
encoder_output = image_feats[topk_idx]
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
output = model.get_cross_embeds(image_embeds=encoder_output, image_atts=encoder_att,
text_embeds=text_feats[start + i].repeat(config['k_test'], 1, 1),
text_atts=text_atts[start + i].repeat(config['k_test'], 1))
score = model.itm_head(output[:, 0, :])[:, 1]
score_matrix_t2i[start + i, topk_idx] = score
if args.distributed:
dist.barrier()
torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Evaluation time {}'.format(total_time_str))
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
# Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index, score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in img2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
# Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index, score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2img[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {'txt_r1': tr1,
'txt_r5': tr5,
'txt_r10': tr10,
'txt_r_mean': tr_mean,
'img_r1': ir1,
'img_r5': ir5,
'img_r10': ir10,
'img_r_mean': ir_mean,
'r_mean': r_mean}
return eval_result
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
world_size = utils.get_world_size()
if args.epoch > 0:
config['schedular']['epochs'] = args.epoch
print(f"### set epochs to: {args.epoch}", flush=True)
if args.bs > 0:
config['batch_size_train'] = args.bs // world_size
if args.k_test > 0:
config['k_test'] = args.k_test
print(f"### set k_test to: {args.k_test}", flush=True)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
print(f"Creating model", flush=True)
if args.text2video:
print("Creating text2video model", flush=True)
from models.model_retrieval import XVLMForT2V
model = XVLMForT2V(config=config)
else:
from models.model_retrieval import XVLMForRetrieval
model = XVLMForRetrieval(config=config)
model.load_pretrained(args.checkpoint, config, is_eval=args.evaluate)
model = model.to(device)
print("### Total Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
tokenizer = build_tokenizer(config['text_encoder'])
print("Creating retrieval dataset", flush=True)
if config.get('is_video', False):
train_dataset, test_dataset = create_dataset('re_video', config, args.evaluate)
val_dataset = test_dataset
else:
train_dataset, val_dataset, test_dataset = create_dataset('re', config, args.evaluate)
start_time = time.time()
print("### output_dir, ", args.output_dir, flush=True)
if args.evaluate:
print("Start evaluating", flush=True)
if utils.is_main_process():
print(f"### data {len(test_dataset)}")
test_loader = create_loader([test_dataset], [None],
batch_size=[config['batch_size_test']],
num_workers=[4],
is_trains=[False],
collate_fns=[None])[0]
# score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, tokenizer, device, config)
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, tokenizer, device, config)
if utils.is_main_process():
# val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
# print(val_result)
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result)
dist.barrier()
else:
print("Start training", flush=True)
train_dataset_size = len(train_dataset)
if utils.is_main_process():
print(f"### data {train_dataset_size}, batch size, {config['batch_size_train']} x {world_size}")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [
config['batch_size_test']] * 2,
num_workers=[4, 4, 4],
is_trains=[True, False, False],
collate_fns=[getattr(train_dataset, 'collate_fn', None), None, None])
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
accumulate_steps = int(config.get('accumulate_steps', 1))
arg_sche['step_per_epoch'] = math.ceil(train_dataset_size/(config['batch_size_train']*world_size) / accumulate_steps)
arg_sche['min_rate'] = config['min_lr'] / arg_opt['lr'] if 'min_lr' in config else 0
lr_scheduler = create_scheduler(arg_sche, optimizer)
checkpointer = Checkpointer(args.output_dir)
max_epoch = config['schedular']['epochs']
best = 0
best_epoch = 0
if config['image_res'] == 224:
print("Zero-Shot Evaluating...", flush=True)
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, tokenizer, device, config)
if utils.is_main_process():
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result, flush=True)
dist.barrier()
exit()
for epoch in range(0, max_epoch):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, device, lr_scheduler, config)
# score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, tokenizer, device, config)
score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, tokenizer, device, config)
if utils.is_main_process():
# val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
# print(val_result)
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'val_{k}': v for k, v in val_result.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
if args.text2video:
score = test_result['img_r_mean']
elif args.pick_best_r1:
score = (test_result['txt_r1'] + test_result['img_r1']) / 2
elif args.pick_best_t2v:
score = test_result['img_r_mean']
else:
score = test_result['r_mean']
if score > best:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
# 'epoch': epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch='best', training_states=optimizer.state_dict())
# torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = score
best_epoch = epoch
elif epoch >= config['schedular']['epochs'] - 1:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
# 'epoch': epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch=epoch, training_states=optimizer.state_dict())
# torch.save(save_obj, os.path.join(args.output_dir, f'checkpoint_{epoch}.pth'))
dist.barrier()
torch.cuda.empty_cache()
if utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write("best epoch: %d" % best_epoch)
os.system(f"cat {args.output_dir}/log.txt")
if len(args.output_hdfs) > 0:
os.system(f'hdfs dfs -put {args.output_dir}/* {args.output_hdfs}/')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('### Time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--output_dir', type=str, required=True) # this script works for both mscoco and flickr30k
parser.add_argument('--output_hdfs', type=str, default='', help="copy to hdfs")
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', action='store_false')
parser.add_argument('--epoch', default=-1, type=int)
parser.add_argument('--bs', default=-1, type=int, help="for each gpu, batch_size = bs // num_gpus")
parser.add_argument('--k_test', default=-1, type=int, help="for evaluation")
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--override_cfg', default="", type=str, help="Use ; to separate keys")
parser.add_argument('--pick_best_r1', action='store_true', help="save best ckpt by r@1")
parser.add_argument('--pick_best_t2v', action='store_true', help="save best ckpt by img recall")
parser.add_argument('--text2video', action='store_true', help="train a text2video retrieval model")
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
utils.update_config(config, args.override_cfg)
if utils.is_main_process():
print('config:', json.dumps(config))
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
if len(args.output_hdfs):
hmkdir(args.output_hdfs)
main(args, config)