forked from Genesis-Embodied-AI/RoboGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
execute_locomotion.py
203 lines (173 loc) · 8.52 KB
/
execute_locomotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import time
import datetime
import copy
import os, sys, shutil, argparse
import pickle
import numpy as np
import scipy.stats as stats
from tqdm import tqdm
from cem_policy.parallel_worker import ParallelRolloutWorker
import os
import pybullet as p
from cem_policy.utils import *
class CEMOptimizer(object):
def __init__(self, cost_function, solution_dim, plan_n_segs, max_iters, population_size, num_elites,
upper_bound=None, lower_bound=None, epsilon=0.05):
"""
:param cost_function: Takes input one or multiple data points in R^{sol_dim}\
:param solution_dim: The dimensionality of the problem space
:param max_iters: The maximum number of iterations to perform during optimization
:param population_size: The number of candidate solutions to be sampled at every iteration
:param num_elites: The number of top solutions that will be used to obtain the distribution
at the next iteration.
:param upper_bound: An array of upper bounds for the sampled data points
:param lower_bound: An array of lower bounds for the sampled data points
:param epsilon: A minimum variance. If the maximum variance drops below epsilon, optimization is stopped.
"""
super().__init__()
self.solution_dim, self.max_iters, self.population_size, self.num_elites = \
solution_dim, max_iters, population_size, num_elites
self.plan_n_segs = plan_n_segs
self.ub, self.lb = upper_bound.reshape([1, solution_dim]), lower_bound.reshape([1, solution_dim])
self.epsilon = epsilon
if num_elites > population_size:
raise ValueError("Number of elites must be at most the population size.")
self.cost_function = cost_function
def obtain_solution(self, cur_state, init_mean=None, init_var=None):
""" Optimizes the cost function using the provided initial candidate distribution
:param cur_state: Full state of the current environment such that the environment can always be reset to this state
:param init_mean: (np.ndarray) The mean of the initial candidate distribution.
:param init_var: (np.ndarray) The variance of the initial candidate distribution.
:return:
"""
mean = (self.ub + self.lb) / 2. if init_mean is None else init_mean
var = (self.ub - self.lb) / 4. if init_var is None else init_var
t = 0
X = stats.norm(loc=np.zeros_like(mean), scale=np.ones_like(mean))
while (t < self.max_iters): # and np.max(var) > self.epsilon:
print("inside CEM, iteration {}".format(t))
samples = X.rvs(size=[self.population_size, self.solution_dim]) * np.sqrt(var) + mean
samples = np.clip(samples, self.lb, self.ub)
full_samples = np.tile(samples, [1, self.plan_n_segs])
costs_ = self.cost_function(cur_state, full_samples)
costs = [_[0] for _ in costs_]
print(np.mean(costs), np.min(costs))
sort_costs = np.argsort(costs)
elites = samples[sort_costs][:self.num_elites]
mean = np.mean(elites, axis=0)
var *= 0.2
t += 1
sol, solvar = mean, var
sol = np.tile(sol, self.plan_n_segs)
solvar = np.tile(solvar, [1, self.plan_n_segs])
return sol
class CEMPolicy(object):
""" Use the ground truth dynamics to optimize a trajectory of actions. """
def __init__(self, env, env_class, env_kwargs, use_mpc, plan_horizon, plan_n_segs, max_iters, population_size, num_elites):
self.env, self.env_class, self.env_kwargs = env, env_class, env_kwargs
self.use_mpc = use_mpc
self.plan_horizon, self.action_dim = plan_horizon, len(env.action_space.sample())
self.plan_n_segs = plan_n_segs
self.action_buffer = []
self.prev_sol = None
self.rollout_worker = ParallelRolloutWorker(env_class, env_kwargs, plan_horizon, self.action_dim)
lower_bound = np.tile(env.action_space.low[None], [int(self.plan_horizon / self.plan_n_segs), 1]).flatten()
upper_bound = np.tile(env.action_space.high[None], [int(self.plan_horizon / self.plan_n_segs), 1]).flatten()
self.optimizer = CEMOptimizer(self.rollout_worker.cost_function,
int(self.plan_horizon * self.action_dim / self.plan_n_segs),
self.plan_n_segs,
max_iters=max_iters,
population_size=population_size,
num_elites=num_elites,
lower_bound=lower_bound,
upper_bound=upper_bound, )
def reset(self):
self.prev_sol = None
def get_action(self, state):
if len(self.action_buffer) > 0 and not self.use_mpc:
action, self.action_buffer = self.action_buffer[0], self.action_buffer[1:]
return action
env_state = save_env(self.env)
soln = self.optimizer.obtain_solution(env_state, self.prev_sol).reshape([-1, self.action_dim])
if self.use_mpc:
self.prev_sol = np.vstack([np.copy(soln)[1:, :], np.zeros([1, self.action_dim])]).flatten()
else:
self.prev_sol = None
self.action_buffer = soln[1:] # self.action_buffer is only needed for the non-mpc case.
load_env(self.env, state=env_state) # Recover the environment
print("cem finished planning!")
return soln[0]
if __name__ == '__main__':
import importlib
import yaml
parser = argparse.ArgumentParser(description='RL for Assistive Gym')
parser.add_argument('--env', default='open_the_dishwasher_door-v0',
help='Environment to train on (default: open_the_dishwasher_door-v0)')
parser.add_argument('--algo', default='sac',
help='Reinforcement learning algorithm')
parser.add_argument('--task_config_path', type=str, default=None)
parser.add_argument('--seed', type=int, default=1,
help='Random seed (default: 1)')
parser.add_argument('--render', type=int, default=0,
help='whether to use rendering (default: 0)')
args = parser.parse_args()
time_string = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H-%M-%S')
robot_name = np.random.choice(['anymal', "a1"])
horizon = 40
config={
'gui': args.render,
'task': None,
'robot_name': robot_name,
'frameskip': 10,
'frameskip_save': 2,
'horizon': horizon,
}
default_cem_kwargs = {
'use_mpc': False,
'plan_horizon': horizon,
'plan_n_segs': int(horizon/5),
'max_iters': 5,
'population_size': 6000,
'num_elites': 1,
}
# change this to be the specified task class
task_config = yaml.safe_load(open(args.task_config_path, 'r'))
solution_path = task_config[0]['solution_path']
task_name = solution_path.split("/")[-1][5:]
module = importlib.import_module("{}.{}".format(solution_path.replace("/", "."), task_name))
config["task_name"] = task_name
env_class = getattr(module, task_name)
env = env_class(**config)
cem_config = copy.deepcopy(config)
cem_config['gui'] = False
policy = CEMPolicy(env,
env_class,
cem_config,
use_mpc=default_cem_kwargs['use_mpc'],
plan_horizon=default_cem_kwargs['plan_horizon'],
plan_n_segs=default_cem_kwargs['plan_n_segs'],
max_iters=default_cem_kwargs['max_iters'],
population_size=default_cem_kwargs['population_size'],
num_elites=default_cem_kwargs['num_elites'])
# Run policy
all_rbgs = []
all_states = []
all_return = []
obs = env.reset()
rgbs = []
states = []
ret = 0
done = False
for idx in range(env.horizon):
print("step {}".format(idx))
action = policy.get_action(obs)
obs, reward, done, _, rgbs_, states_ = env.step_(action)
ret += reward
rgbs += rgbs_
states += states_
save_path=f"{solution_path}/cem/{time_string}_{robot_name}_{ret:.3f}"
if not os.path.exists(save_path):
os.makedirs(save_path)
save_numpy_as_gif(np.array(rgbs), f"{save_path}/result.mp4", fps=60)
pickle.dump(states, open(f"{save_path}/result.pkl", 'wb'), pickle.HIGHEST_PROTOCOL)
p.disconnect(env.id)