Skip to content

Latest commit

 

History

History
122 lines (114 loc) · 8.78 KB

2023_before.md

File metadata and controls

122 lines (114 loc) · 8.78 KB

Video-Frame-Interpolation-Summary

Video Frame Interpolation Summary 2020~2023

参考网站

1.https://paperswithcode.com/sota/video-frame-interpolation-on-ucf101-1
2.https://paperswithcode.com/sota/video-frame-interpolation-on-vimeo90k
3.https://github.com/AIVFI/Video-Frame-Interpolation-Rankings-and-Video-Deblurring-Rankings

List

数据集:Vimeo90K:

index method paper code PSNR SSIM Algorithm Traindata Arbitrary
1 EMA-VFI(CVPR 2023) paper code 35.48 0.9701 混合CNN和Transformer架构 Vimeo90K True
2 DQBC(IJCAI 2023) paper code 35.44 0.9700 基于CNN的SynthNet合成 Vimeo90K False
3 AMT(CVPR 2023) paper code 35.45 0.9700 混合CNN和Transformer架构 Vimeo90K True
4 VFIformer(CVPR 2022) paper code 35.43 0.9700 Transformer架构 Vimeo90K False
5 UPR-Net (CVPR 2023) paper code 35.47 0.9700 光流-轻量-指标高 Vimeo90K(51312 triplets) True
6 BiFormer (CVPR 2023) paper code - - 双向Transformer-4K帧插 X4K1000FPS False
7 IFRNet (CVPR 2022) paper code 35.42 0.9698 conv-轻量 Vimeo90K True
8 LDMVFI (arXiv 2023-03) paper code 32.186 - 扩散模型 Vimeo90k(64612 frame)+BVI-DVC(17600 frame) -
9 MA-GCSPA (arXiv 2023) paper code 35.43 - conv Vimeo90k -
10 VFI_Adapter (arXiv 2023-06) paper code - - 提高VFI性能 Vimeo90k -
11 FILM (ECCV 2022) paper code 35.87 0.968 大场景运动 Vimeo90k True
12 (CVPR2023) paper None 36.34 0.9814 a novel transformer-based Vimeo90k -
13 (CVPR2023) paper None 36.33 0.975 a novel frame renderer Vimeo90k -
14 VFIFT (Arxiv 2023-07) paper None 36.43 0.9813 Flow Transformer Vimeo90k -
15 WaveletVFI (IEEE TIP) paper code 35.58 0.978 WaveletVFI Vimeo90k -
16 InterpAny (arXiv 2023-11) paper code - - 新颖的任意插帧 Vimeo90k -
17 SAM-VFI (arXiv 2023-12) paper None - - SAM助力插帧 Vimeo90k -
18 MISO-VFI (-) code - - 多输入单输出 - -
19 DIS-M2M++ (arXiv 2023-10) paper None - - 扩展M2M++框架 Vimeo90k -

视频结果

https://space.bilibili.com/350913028/channel/seriesdetail?sid=409673
(仅用于论文的对比效果展示)

增加功能

  1. 结果保存为无损yuv格式视频:inferencre_video_yuv.py
  2. 增加分离声音和合成声音脚本(to do)

说明

1.代码运行环境:阿里云 V100 16GB,主要考虑推理时间,性能指标及显存占用。
2.推理代码基于:https://github.com/hzwer/arXiv2020-RIFE 欢迎大家去源码star。
3.上面代码只给出了推理代码,model等文件,可去对应源码获取。
4.后续有机会会继续更新,如有误,可联系我进行修正。

性能(2倍插帧)

数据集:UCF101: image size:256x256,image numbers: 379,主要考虑推理时间(ms),性能指标及显存占用。

index method infer time memory PSNR SSIM
1 DAIN(CVPR2019) ~0.1736s - - -
2 EQVI(AIM2020) ~0.669s - - -
3 RIFE(arXiv2020) ~1.538s 1348MiB 35.243 0.96833
4 CAIN(AAAI2021) ~0.1884s 1996MiB 34.9580 0.96794
5 FLAVR(CVPR2021) ~0.0897s 2594MiB 34.970 0.96802
6 RRIN(ICASSP 2020) ~0.2931s 2656MiB 32.6678 0.966584
7 AdaCoF(CVPR 2020) ~0.2055s 1948MiB 35.165 0.96797
8 CDFI(CVPR2021) 14482M 3638MiB 35.208 0.96739
9 EDSC(CVPR2021) 1257M 1832MiB 35.168 0.96793

1080p的的视频片段,共625帧,推理时间为整个程序的运行时间。

index method memory time machine
1 DAIN - - -
2 EQVI - - -
3 RIFE 6042M 37s V100
4 CAIN 4126M 73s V100
5 FLAVR 11638M 2107s V100
6 RRIN 8832M 166s V100
7 AdaCoF 15280M 77s V100
8 CDFI 14482M 508s V100
9 EDSC 1257M 97s V100
10 BMBC 19887M ~78min 3090
11 AMBE 16247M ~900s 3090

源码

1.DAIN (Depth-Aware Video Frame Interpolation)
paper:https://arxiv.org/pdf/1904.00830.pdf
github:https://github.com/baowenbo/DAIN
使用深度感知的流投影层来估计作为双向流加权组合的中间流。
2.EQVI(Enhanced Quadratic Video Interpolation)
paper:https://arxiv.org/pdf/2009.04642.pdf
github: https://github.com/lyh-18/EQVI
3.RIFE v2.4 - Real Time Video Interpolation
paper:https://arxiv.org/pdf/2011.06294.pdf
github:https://github.com/hzwer/arXiv2020-RIFE
4.CAIN(Channel Attention Is All You Need for Video Frame Interpolation)
paper:https://aaai.org/ojs/index.php/AAAI/article/view/6693/6547
github: https://github.com/myungsub/CAIN
一种高效的无光流估计方法,使用PixelShuffle算子和channel attention来隐式捕捉运动信息。
5.FLAVR (Flow-Agnostic Video Representations for Fast Frame Interpolation (不依赖光流)
paper:https://arxiv.org/pdf/2012.08512.pdf
github:https://github.com/tarun005/FLAVR
6.RRIN(Video Frame Interpolation via Residue Refinement) (不依赖光流)
paper: https://ieeexplore.ieee.org/document/9053987/
github:https://github.com/HopLee6/RRIN
7.AdaCoF(Adaptive Collaboration of Flows for Video Frame Interpolation)
paper:https://arxiv.org/pdf/1907.10244.pdf
github:https://github.com/HyeongminLEE/AdaCoF-pytorch
8.CDFI(Compression-Driven Network Design for Frame Interpolation)
paper:https://arxiv.org/pdf/2103.10559.pdf
github:https://github.com/tding1/CDFI
9.EDSC( Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution)
paper:https://arxiv.org/pdf/2006.08070.pdf
github:https://github.com/Xianhang/EDSC-pytorch
提出DSepConv[6]利用可变形可分卷积扩展基于核的方法,并进一步提出EDSC执行多次插补。
10.UTI-VFI(Video Frame Interpolation without Temporal Priors)
paper:https://github.com/yjzhang96/UTI-VFI/raw/master/paper/nips_camera_ready.pdf
github:https://github.com/yjzhang96/UTI-VFI
11.BMBC(Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation)
paper:https://arxiv.org/abs/2007.12622
github:https://github.com/JunHeum/BMBC
12.ABME(Asymmetric Bilateral Motion Estimation for Video Frame Interpolation)
paper:https://arxiv.org/abs/2108.06815
github:https://github.com/JunHeum/ABME

Dataset

UCF101: Download UCF101 dataset
Vimeo90K: Download Vimeo90K dataset
MiddleBury: Download MiddleBury OTHER dataset
HD: Download HD dataset

致谢

感谢各位大佬的开源,希望大佬们论文多多,工作顺利。如有侵犯权益,可联系我进行修改和删除。