Video Frame Interpolation Summary 2020~2023
1.https://paperswithcode.com/sota/video-frame-interpolation-on-ucf101-1
2.https://paperswithcode.com/sota/video-frame-interpolation-on-vimeo90k
3.https://github.com/AIVFI/Video-Frame-Interpolation-Rankings-and-Video-Deblurring-Rankings
数据集:Vimeo90K:
index | method | paper | code | PSNR | SSIM | Algorithm | Traindata | Arbitrary |
---|---|---|---|---|---|---|---|---|
1 | EMA-VFI(CVPR 2023) | paper | code | 35.48 | 0.9701 | 混合CNN和Transformer架构 | Vimeo90K | True |
2 | DQBC(IJCAI 2023) | paper | code | 35.44 | 0.9700 | 基于CNN的SynthNet合成 | Vimeo90K | False |
3 | AMT(CVPR 2023) | paper | code | 35.45 | 0.9700 | 混合CNN和Transformer架构 | Vimeo90K | True |
4 | VFIformer(CVPR 2022) | paper | code | 35.43 | 0.9700 | Transformer架构 | Vimeo90K | False |
5 | UPR-Net (CVPR 2023) | paper | code | 35.47 | 0.9700 | 光流-轻量-指标高 | Vimeo90K(51312 triplets) | True |
6 | BiFormer (CVPR 2023) | paper | code | - | - | 双向Transformer-4K帧插 | X4K1000FPS | False |
7 | IFRNet (CVPR 2022) | paper | code | 35.42 | 0.9698 | conv-轻量 | Vimeo90K | True |
8 | LDMVFI (arXiv 2023-03) | paper | code | 32.186 | - | 扩散模型 | Vimeo90k(64612 frame)+BVI-DVC(17600 frame) | - |
9 | MA-GCSPA (arXiv 2023) | paper | code | 35.43 | - | conv | Vimeo90k | - |
10 | VFI_Adapter (arXiv 2023-06) | paper | code | - | - | 提高VFI性能 | Vimeo90k | - |
11 | FILM (ECCV 2022) | paper | code | 35.87 | 0.968 | 大场景运动 | Vimeo90k | True |
12 | (CVPR2023) | paper | None | 36.34 | 0.9814 | a novel transformer-based | Vimeo90k | - |
13 | (CVPR2023) | paper | None | 36.33 | 0.975 | a novel frame renderer | Vimeo90k | - |
14 | VFIFT (Arxiv 2023-07) | paper | None | 36.43 | 0.9813 | Flow Transformer | Vimeo90k | - |
15 | WaveletVFI (IEEE TIP) | paper | code | 35.58 | 0.978 | WaveletVFI | Vimeo90k | - |
16 | InterpAny (arXiv 2023-11) | paper | code | - | - | 新颖的任意插帧 | Vimeo90k | - |
17 | SAM-VFI (arXiv 2023-12) | paper | None | - | - | SAM助力插帧 | Vimeo90k | - |
18 | MISO-VFI (-) | code | - | - | 多输入单输出 | - | - | |
19 | DIS-M2M++ (arXiv 2023-10) | paper | None | - | - | 扩展M2M++框架 | Vimeo90k | - |
https://space.bilibili.com/350913028/channel/seriesdetail?sid=409673
(仅用于论文的对比效果展示)
- 结果保存为无损yuv格式视频:inferencre_video_yuv.py
- 增加分离声音和合成声音脚本(to do)
1.代码运行环境:阿里云 V100 16GB,主要考虑推理时间,性能指标及显存占用。
2.推理代码基于:https://github.com/hzwer/arXiv2020-RIFE 欢迎大家去源码star。
3.上面代码只给出了推理代码,model等文件,可去对应源码获取。
4.后续有机会会继续更新,如有误,可联系我进行修正。
数据集:UCF101: image size:256x256,image numbers: 379,主要考虑推理时间(ms),性能指标及显存占用。
index | method | infer time | memory | PSNR | SSIM |
---|---|---|---|---|---|
1 | DAIN(CVPR2019) | ~0.1736s | - | - | - |
2 | EQVI(AIM2020) | ~0.669s | - | - | - |
3 | RIFE(arXiv2020) | ~1.538s | 1348MiB | 35.243 | 0.96833 |
4 | CAIN(AAAI2021) | ~0.1884s | 1996MiB | 34.9580 | 0.96794 |
5 | FLAVR(CVPR2021) | ~0.0897s | 2594MiB | 34.970 | 0.96802 |
6 | RRIN(ICASSP 2020) | ~0.2931s | 2656MiB | 32.6678 | 0.966584 |
7 | AdaCoF(CVPR 2020) | ~0.2055s | 1948MiB | 35.165 | 0.96797 |
8 | CDFI(CVPR2021) | 14482M | 3638MiB | 35.208 | 0.96739 |
9 | EDSC(CVPR2021) | 1257M | 1832MiB | 35.168 | 0.96793 |
1080p的的视频片段,共625帧,推理时间为整个程序的运行时间。
index | method | memory | time | machine |
---|---|---|---|---|
1 | DAIN | - | - | - |
2 | EQVI | - | - | - |
3 | RIFE | 6042M | 37s | V100 |
4 | CAIN | 4126M | 73s | V100 |
5 | FLAVR | 11638M | 2107s | V100 |
6 | RRIN | 8832M | 166s | V100 |
7 | AdaCoF | 15280M | 77s | V100 |
8 | CDFI | 14482M | 508s | V100 |
9 | EDSC | 1257M | 97s | V100 |
10 | BMBC | 19887M | ~78min | 3090 |
11 | AMBE | 16247M | ~900s | 3090 |
1.DAIN (Depth-Aware Video Frame Interpolation)
paper:https://arxiv.org/pdf/1904.00830.pdf
github:https://github.com/baowenbo/DAIN
使用深度感知的流投影层来估计作为双向流加权组合的中间流。
2.EQVI(Enhanced Quadratic Video Interpolation)
paper:https://arxiv.org/pdf/2009.04642.pdf
github: https://github.com/lyh-18/EQVI
3.RIFE v2.4 - Real Time Video Interpolation
paper:https://arxiv.org/pdf/2011.06294.pdf
github:https://github.com/hzwer/arXiv2020-RIFE
4.CAIN(Channel Attention Is All You Need for Video Frame Interpolation)
paper:https://aaai.org/ojs/index.php/AAAI/article/view/6693/6547
github: https://github.com/myungsub/CAIN
一种高效的无光流估计方法,使用PixelShuffle算子和channel attention来隐式捕捉运动信息。
5.FLAVR (Flow-Agnostic Video Representations for Fast Frame Interpolation (不依赖光流)
paper:https://arxiv.org/pdf/2012.08512.pdf
github:https://github.com/tarun005/FLAVR
6.RRIN(Video Frame Interpolation via Residue Refinement) (不依赖光流)
paper: https://ieeexplore.ieee.org/document/9053987/
github:https://github.com/HopLee6/RRIN
7.AdaCoF(Adaptive Collaboration of Flows for Video Frame Interpolation)
paper:https://arxiv.org/pdf/1907.10244.pdf
github:https://github.com/HyeongminLEE/AdaCoF-pytorch
8.CDFI(Compression-Driven Network Design for Frame Interpolation)
paper:https://arxiv.org/pdf/2103.10559.pdf
github:https://github.com/tding1/CDFI
9.EDSC( Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution)
paper:https://arxiv.org/pdf/2006.08070.pdf
github:https://github.com/Xianhang/EDSC-pytorch
提出DSepConv[6]利用可变形可分卷积扩展基于核的方法,并进一步提出EDSC执行多次插补。
10.UTI-VFI(Video Frame Interpolation without Temporal Priors)
paper:https://github.com/yjzhang96/UTI-VFI/raw/master/paper/nips_camera_ready.pdf
github:https://github.com/yjzhang96/UTI-VFI
11.BMBC(Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation)
paper:https://arxiv.org/abs/2007.12622
github:https://github.com/JunHeum/BMBC
12.ABME(Asymmetric Bilateral Motion Estimation for Video Frame Interpolation)
paper:https://arxiv.org/abs/2108.06815
github:https://github.com/JunHeum/ABME
UCF101: Download UCF101 dataset
Vimeo90K: Download Vimeo90K dataset
MiddleBury: Download MiddleBury OTHER dataset
HD: Download HD dataset
感谢各位大佬的开源,希望大佬们论文多多,工作顺利。如有侵犯权益,可联系我进行修改和删除。