-
Notifications
You must be signed in to change notification settings - Fork 3
/
Lemmas.idr
246 lines (178 loc) · 8.02 KB
/
Lemmas.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
module Lemmas
import Data.Nat
import Data.Vect
import Decidable.Equality
import Injection
import Complex
%default total
export
lemmaplusOneRight : (n : Nat) -> n + 1 = S n
lemmaplusOneRight n = rewrite plusCommutative n 1 in Refl
export
lemmaPlusSRight : (n : Nat) -> (k : Nat) -> plus n (S k) = S (plus n k)
lemmaPlusSRight Z k = Refl
lemmaPlusSRight (S p) k = rewrite lemmaPlusSRight p k in Refl
--LEMMAS ABOUT &&
export
lemmaAndLeft : {a : Bool} -> {b : Bool} -> (a && b = True) -> (a = True)
lemmaAndLeft {a = True} {b} p = Refl
lemmaAndLeft {a = False} {b} p impossible
export
lemmaAndRight : {a : Bool} -> {b : Bool} -> (a && b = True) -> (b = True)
lemmaAndRight {a} {b = True} p = Refl
lemmaAndRight {a = True} {b = False} p impossible
lemmaAndRight {a = False} {b = False} p impossible
export
lemmaAnd : {a : Bool} -> {b : Bool} -> (a = True) -> (b = True) -> (a && b = True)
lemmaAnd {a = True} {b = True} p1 p2 = Refl
--LEMMAS ABOUT <, >, =, /=, <=, >= : TRANSITIVITY
export
lemmaTransLTELT : (i : Nat) -> (n : Nat) -> (p : Nat) -> (i <= n) = True -> (n < p) = True -> (i < p) = True
lemmaTransLTELT 0 0 (S k) _ _ = Refl
lemmaTransLTELT 0 (S k) (S j) _ _ = Refl
lemmaTransLTELT (S k) (S n) (S p) prf1 prf2 = rewrite lemmaTransLTELT k n p prf1 prf2 in Refl
export
lemmaTransLTLTE : (i : Nat) -> (n : Nat) -> (p : Nat) -> (i < n) = True -> (n <= p) = True -> (i < p) = True
lemmaTransLTLTE 0 (S n) (S k) prf prf1 = Refl
lemmaTransLTLTE (S k) (S n) (S p) prf prf1 = rewrite lemmaTransLTLTE k n p prf prf1 in Refl
export
lemmaTransitivity : (i : Nat) -> (n : Nat) -> (p : Nat) -> (i < n) = True -> (n < p) = True -> (i < p) = True
lemmaTransitivity 0 (S k) (S m) prf prf1 = Refl
lemmaTransitivity (S k) (S m) (S l) prf prf1 = lemmaTransitivity k m l prf prf1
--BASIC LEMMAS ABOUT <, >, =, /=, <=, >=
export
lemmaLTERefl : (n : Nat) -> (n <= n) = True
lemmaLTERefl 0 = Refl
lemmaLTERefl (S k) = lemmaLTERefl k
export
lemmaSymDiff : {x : Nat} -> {y : Nat} -> (x /= y) = True -> (y /= x) = True
lemmaSymDiff {x = 0} {y = (S m)} _ = Refl
lemmaSymDiff {x = (S k)} {y = 0} _ = Refl
lemmaSymDiff {x = (S k)} {y = (S j)} prf = lemmaSymDiff {x = k} {y = j} prf
export
lemma0LTSucc : (k : Nat) -> 0 < S k = True
lemma0LTSucc k = Refl
export
lemma1LTESucc : (k : Nat) -> 1 <= S k = True
lemma1LTESucc 0 = Refl
lemma1LTESucc (S k) = Refl
export
lemmaLTEAddR : (n : Nat) -> (p : Nat) -> n <= (n + p) = True
lemmaLTEAddR Z 0 = Refl
lemmaLTEAddR Z (S k) = Refl
lemmaLTEAddR (S n) p = lemmaLTEAddR n p
export
lemmaLTEAddL : (n : Nat) -> (p : Nat) -> p <= (n + p) = True
lemmaLTEAddL n p = rewrite plusCommutative n p in lemmaLTEAddR p n
export
lemmaDiffSuccPlus : (k : Nat) -> (p : Nat) -> (k /= S (p + k)) = True
lemmaDiffSuccPlus 0 p = Refl
lemmaDiffSuccPlus (S k) j = rewrite sym $ plusSuccRightSucc j k in lemmaDiffSuccPlus k j
export
lemmaLTSuccPlus : (k : Nat) -> (p : Nat) -> (k < S (k + p)) = True
lemmaLTSuccPlus 0 p = Refl
lemmaLTSuccPlus (S k) j = lemmaLTSuccPlus k j
export
lemmaLTSucc : (k : Nat) -> (k < S k) = True
lemmaLTSucc 0 = Refl
lemmaLTSucc (S k) = lemmaLTSucc k
export
lemmakLTSk : (k : Nat) -> (S k) < S (k + 1) = True
lemmakLTSk k = rewrite lemmaplusOneRight k in lemmaLTSucc k
export
lemmaLTSuccLT : (k : Nat) -> (n : Nat) -> (S k) < n = True -> k < n = True
lemmaLTSuccLT k 0 prf impossible
lemmaLTSuccLT 0 (S j) prf = Refl
lemmaLTSuccLT (S k) (S j) prf = lemmaLTSuccLT k j prf
export
lemmaLTESuccLT : (k : Nat) -> (n : Nat) -> (S k) <= n = True -> k < n = True
lemmaLTESuccLT k 0 prf impossible
lemmaLTESuccLT 0 (S j) prf = Refl
lemmaLTESuccLT (S k) (S j) prf = lemmaLTESuccLT k j prf
export
lemmaLTESuccLTE : (k : Nat) -> (n : Nat) -> (S k) <= n = True -> k <= n = True
lemmaLTESuccLTE k 0 prf impossible
lemmaLTESuccLTE 0 (S j) prf = Refl
lemmaLTESuccLTE (S k) (S j) prf = lemmaLTESuccLTE k j prf
export
lemmaSuccsLT : (k : Nat) -> (n : Nat) -> (S k) < (S n) = True -> k < n = True
lemmaSuccsLT k n prf = prf
export
lemmaCompLT0 : (n : Nat) -> (j : Nat) -> {auto prf : j < n = True} -> 0 < n = True
lemmaCompLT0 n 0 {prf} = prf
lemmaCompLT0 (S p) (S k) = Refl
--LEMMAS USED BY THE APPLY FUNCTION
export
indexInjectiveVect : (j : Nat) -> (n : Nat) -> (v : Vect i Nat) ->
{prf : isInjective n v = True} -> {prf1 : j < i = True} ->
(index j v < n) = True
indexInjectiveVect Z n (x :: xs) {prf} = lemmaAndLeft (lemmaAndLeft prf)
indexInjectiveVect (S k) n (x :: xs) {prf} =
indexInjectiveVect k n xs {prf = lemmaAnd (lemmaAndRight (lemmaAndLeft prf)) (lemmaAndRight (lemmaAndRight prf))}
export
different' : (x : Nat) -> (m : Nat) -> (xs : Vect i Nat) ->
{prf1 : m < i = True} -> {prf2 : isDifferent x xs = True} ->
(x /= index m xs) = True
different' x 0 (y :: xs) = lemmaAndLeft prf2
different' x (S k) (y :: xs) =
different' x k xs {prf1} {prf2 = lemmaAndRight prf2}
private
different'' : (x : Nat) -> (m : Nat) -> (xs : Vect i Nat) ->
{prf1 : m < i = True} -> {prf2 : isDifferent x xs = True} ->
(index m xs /= x) = True
different'' x m xs = lemmaSymDiff (different' x m xs {prf1} {prf2})
export
differentIndexInjectiveVect : (c : Nat) -> (t : Nat) -> (n : Nat) -> {prf1 : (c /= t) = True} ->
(v : Vect i Nat) -> {prf2 : isInjective n v = True} ->
{prf3 : c < i = True} -> {prf4 : t < i = True} ->
(index c v /= index t v) = True
differentIndexInjectiveVect 0 (S m) n (x :: xs) =
different' x m xs {prf1 = prf4} {prf2 = lemmaAndLeft (lemmaAndRight prf2)}
differentIndexInjectiveVect (S k) 0 n (x :: xs) =
different'' x k xs {prf1 = prf3} {prf2 = lemmaAndLeft (lemmaAndRight prf2)}
differentIndexInjectiveVect (S k) (S j) n (x :: xs) =
let p2 = lemmaAnd (lemmaAndRight (lemmaAndLeft prf2)) (lemmaAndRight (lemmaAndRight prf2)) in
differentIndexInjectiveVect k j n {prf1} xs {prf2 = p2} {prf3} {prf4}
--LEMMAS USED BY THE CONTROLLED FUNCTION
export
lemmaControlledInj : (n : Nat) -> (j : Nat) -> {auto prf : j < n = True} -> isInjective (S n) [0, S j] = True
lemmaControlledInj 0 0 impossible
lemmaControlledInj 0 (S k) {prf} = prf
lemmaControlledInj (S k) 0 = Refl
lemmaControlledInj (S p) (S k) {prf} = lemmaControlledInj p k {prf}
export
lemmaControlledInj2 : (n : Nat) -> (c : Nat) -> (t : Nat) ->
{auto prf1 : (c < n) = True} -> {auto prf2 : (t < n) = True} -> {auto prf3 : (c /= t) = True} ->
isInjective (S n) [0, S c, S t] = True
lemmaControlledInj2 0 0 t impossible
lemmaControlledInj2 0 (S k) t {prf1} = prf1
lemmaControlledInj2 (S k) 0 0 {prf3} = prf3
lemmaControlledInj2 (S k) 0 (S j) = lemmaAnd (lemmaAnd prf2 Refl) Refl
lemmaControlledInj2 (S k) (S j) 0 = lemmaAnd (lemmaAnd prf1 Refl) Refl
lemmaControlledInj2 (S k) (S j) (S i) = lemmaControlledInj2 k j i {prf1} {prf2} {prf3}
--LEMMAS USED BY THE TENSOR FUNCTION
export
isDiffRangeVect : (k : Nat) -> (length : Nat) -> (p : Nat) -> isDifferent k (rangeVect (S (p + k)) length) = True
isDiffRangeVect k 0 _ = Refl
isDiffRangeVect k (S j) p =
lemmaAnd (lemmaDiffSuccPlus k p) (isDiffRangeVect k j (S p))
export
allDiffRangeVect : (startIndex : Nat) -> (length : Nat) -> allDifferent (rangeVect startIndex length) = True
allDiffRangeVect startIndex 0 = Refl
allDiffRangeVect startIndex (S k) =
let p1 = isDiffRangeVect startIndex k 0
in lemmaAnd p1 (allDiffRangeVect (S startIndex) k)
export
allSmallerRangeVect : (startIndex : Nat) -> (length : Nat) -> allSmaller (rangeVect startIndex length) (startIndex + length) = True
allSmallerRangeVect startIndex 0 = Refl
allSmallerRangeVect startIndex (S k) =
rewrite sym $ plusSuccRightSucc startIndex k in
lemmaAnd (lemmaLTSuccPlus startIndex k) (allSmallerRangeVect (S startIndex) k)
export
allSmallerPlus : (n : Nat) -> (p : Nat) -> (v : Vect k Nat) -> allSmaller v n = True -> allSmaller v (n + p) = True
allSmallerPlus n p [] prf = Refl
allSmallerPlus n p (x :: xs) prf =
let p1 = lemmaAndLeft prf
p2 = lemmaTransLTLTE x n (n + p) p1 (lemmaLTEAddR n p)
p3 = lemmaAndRight prf
in lemmaAnd p2 (allSmallerPlus n p xs p3)