-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_llama.py
50 lines (37 loc) · 1.38 KB
/
train_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from datasets import load_dataset
import mindspore as ms
ms.set_context(mode=0)
from mindnlp.transformers import AutoModelForCausalLM, AutoTokenizer
from mindnlp.engine import TrainingArguments, Trainer
from mindnlp.engine.trainer.base import init_distributed
data_parallel_mode = None # choices: ['vanilla', None]
if data_parallel_mode:
_, _ = init_distributed(data_parallel_mode)
model = AutoModelForCausalLM.from_pretrained("llama-7b")
tokenizer = AutoTokenizer.from_pretrained("llama-7b", add_prefix_space=True)
dataset = load_dataset('codyburker/yelp_review_sampled')
def tokenize_function(x):
y = tokenizer(x['text'], padding='max_length', truncation=True, max_length=512)
y['labels'] = y['input_ids']
return {'sample': y}
tokenized_datasets = dataset.map(tokenize_function, batched=False)
small_train_dataset = tokenized_datasets['train'].shuffle(seed=42).select(range(1000))
training_args = TrainingArguments(
"output",
gradient_accumulation_steps=1,
per_device_train_batch_size=2,
learning_rate=2e-5,
num_train_epochs=2,
logging_steps=100,
save_strategy='epoch',
data_parallel_mode=data_parallel_mode,
dataset_drop_last=True,
remove_unused_columns=True,
column_name_collate=['attention_mask', 'input_ids', 'labels']
)
trainer = Trainer(
model=model,
train_dataset=small_train_dataset,
args=training_args,
)
trainer.train()