-
Notifications
You must be signed in to change notification settings - Fork 155
/
pickle_to_tex.py
179 lines (152 loc) · 5.17 KB
/
pickle_to_tex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# This script converts output pickle to step-by-step latex figures
import numpy as np
import os
import pickle as pickle
import shutil
NUM_STEPS = 5
CURVE_STEPS = 8
files = []
filters = [
'Expo.',
'Gam.',
'W.B.',
'Satu.',
'Tone',
'Cst.',
'BW',
'Color',
]
def visualize_detail(name, param, pos):
def map_pos(x, y):
return '(%f,%f)' % (pos[0] + x * 0.8, pos[1] - 1.1 + y * 0.8)
if name == 'Expo.':
return '{Exposure $%+.2f$};' % param[0]
elif name == 'Gam.':
return '{Gamma $1/%.2f$};' % (1 / param[0])
elif name == 'Satu.':
return '{Saturation $+%.2f$};' % param[0]
elif name == 'Cst.':
return '{Contrast $%+.2f$};' % param[0]
elif name == 'BW':
return '{$%+.2f$};' % (param[0])
elif name == 'W.B.':
scaling = 1 / (1e-5 + 0.27 * param[0] + 0.67 * param[1] + 0.06 * param[2])
r, g, b = [int(255 * x * scaling) for x in param]
color = r'{\definecolor{tempcolor}{RGB}{%d,%d,%d}};' % (r, g, b)
return color + '\n' + r'\tikz \fill[tempcolor] (0,0) rectangle (4 ex, 2 ex);'
elif name == 'Tone':
s = '{Tone\quad\quad\quad\quad};\n'
s += r'\draw[<->] %s -- %s -- %s;' % (map_pos(0, 1.1), map_pos(0, 0),
map_pos(1.1, 0))
s += '\n'
for i in range(1):
values = np.array([0] + list(param[0][0][i]))
values /= sum(values) + 1e-30
scale = 1
values *= scale
for j in range(0, CURVE_STEPS):
values[j + 1] += values[j]
for j in range(CURVE_STEPS):
p1 = (1.0 / CURVE_STEPS * j, values[j])
p2 = (1.0 / CURVE_STEPS * (j + 1), values[j + 1])
s += r'\draw[-] %s -- %s;' % (map_pos(*p1), map_pos(*p2))
if j != CURVE_STEPS - 1:
s += '\n'
return s
elif name == 'Color':
s = '{Color\quad\quad\quad\quad};\n'
s += r'\draw[<->] %s -- %s -- %s;' % (map_pos(0, 1.1), map_pos(0, 0),
map_pos(1.1, 0))
s += '\n'
c = ['red', 'green', 'blue']
for i in range(3):
#print(param)
values = np.array([0] + list(param[0][0][i]))
values /= sum(values) + 1e-30
scale = 1
values *= scale
for j in range(0, CURVE_STEPS):
values[j + 1] += values[j]
for j in range(CURVE_STEPS):
p1 = (1.0 / CURVE_STEPS * j, values[j])
p2 = (1.0 / CURVE_STEPS * (j + 1), values[j + 1])
s += r'\draw[%s,-] %s -- %s;' % (c[i], map_pos(*p1), map_pos(*p2))
if j != CURVE_STEPS - 1:
s += '\n'
return s
else:
assert False
def visualize_step(debug_info, step_name, position):
pdf = debug_info['pdf']
filter_id = debug_info['selected_filter_id']
s = ''
s += r'\node[draw, rectangle, thick,minimum height=7em,minimum width=7em](%s) at (%f,%f) {};' % (
step_name, position[0], position[1])
s += '\n'
s += r'\node (%ss) at ([yshift=1.4em]%s.center) {' % (step_name, step_name)
s += '\n'
s += r' \scalebox{0.7}{'
s += '\n'
s += r' \begin{tabular}{|p{0.5cm}p{0.2cm}p{0.5cm}p{0.2cm}|}'
s += '\n'
s += r' \hline'
s += '\n'
def bar(i):
return '\pdfbarSelected' if i == filter_id else '\pdfbar'
for i in range(4):
f1 = filters[i]
b1 = r'%s{%.3f}' % (bar(i), pdf[i] * 3)
f2 = filters[i + 4]
b2 = r'%s{%.3f}' % (bar(i + 4), pdf[i + 4] * 3)
s += r' %s & %s & %s & %s \\' % (f1, b1, f2, b2)
s += '\n'
s += r' \hline'
s += '\n'
s += r' \end{tabular}'
s += '\n'
s += r' }'
s += '\n'
s += r'};'
s += '\n'
s += r'\node (%sd) at ([yshift=-2.0em]%s.center)' % (step_name, step_name)
s += '\n'
s += visualize_detail(
filters[filter_id],
debug_info['filter_debug_info'][filter_id]['filter_parameters'], position)
s += '\n'
return s
def process_dog():
f = 'dog04/a0694.tif_debug.pkl'
debug_info_list = pickle.load(open(f, 'r'))
for i in range(NUM_STEPS):
debug_info = debug_info_list[i]
print(visualize_step(debug_info, 'agent%d' % (i + 1), (4, i * -3)), end=' ')
def process(filename, id, src):
pkl_fn = os.path.join(src, filename)
debug_info_list = pickle.load(open(pkl_fn, 'rb'))
filename = filename[:-10]
target_dir = 'export/{}'.format(id)
os.makedirs(target_dir, exist_ok=True)
for i in range(NUM_STEPS - 1):
shutil.copy(os.path.join(src, filename + '.intermediate%02d.png' % i),
os.path.join(target_dir, 'step%d.png' % (i + 1)))
shutil.copy(os.path.join(src, filename + '.retouched.png'), os.path.join(target_dir, 'final.png'))
shutil.copy(os.path.join(src, filename + '.linear.png'), os.path.join(target_dir, 'input.png'))
with open(target_dir + '/steps.tex', 'w') as f:
for i in range(NUM_STEPS):
debug_info = debug_info_list[i]
print(
visualize_step(debug_info, 'agent%d' % (i + 1), (4, i * -3)),
end=' ',
file=f)
print('##########################################')
print('Note: Please make sure you have pdflatex.')
print('##########################################')
print()
for input_dir in ['outputs']:
for f in os.listdir(input_dir):
if not f.endswith('pkl'):
continue
id = f.split('.')[0]
print('Generating pdf operating sequences for image {}...'.format(id))
process(f, id, src=input_dir)