-
Notifications
You must be signed in to change notification settings - Fork 155
/
net.py
executable file
·877 lines (774 loc) · 31.8 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
from util import STATE_DROPOUT_BEGIN, STATE_REWARD_DIM, STATE_STEP_DIM, STATE_STOPPED_DIM
import pickle as pickle
import os
import shutil
import time
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as ly
from replay_memory import ReplayMemory
from util import make_image_grid, Tee, merge_dict, Dict
device = '/gpu:0'
# A small part of this script is based on https://github.com/Zardinality/WGAN-tensorflow
class GAN:
def __init__(self, cfg, restore=False):
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
sess_config.gpu_options.per_process_gpu_memory_fraction = 0.4
self.sess = tf.Session(config=sess_config)
self.cfg = cfg
assert cfg.gan == 'ls' or cfg.gan == 'w'
self.dir = os.path.join('models', cfg.name)
self.image_dir = os.path.join(self.dir,
'images-' + cfg.name.replace('/', '-'))
self.dump_dir = os.path.join(self.dir, 'dump-' + cfg.name.replace('/', '-'))
if not os.path.exists(self.dir):
os.makedirs(self.dir)
if not os.path.exists(self.dump_dir):
os.makedirs(self.dump_dir)
if not os.path.exists(self.image_dir):
os.makedirs(self.image_dir)
if not restore:
self.backup_scripts()
self.tee = Tee(os.path.join(self.dir, 'log.txt'))
self.is_train = tf.placeholder(tf.int32, shape=[], name='is_train')
self.is_training = tf.equal(self.is_train, 1)
self.memory = ReplayMemory(cfg, load=not restore)
self.z = self.memory.z
self.real_data = self.memory.real_data
self.real_data_feature = self.memory.real_data_feature
self.fake_input = self.memory.fake_input
self.fake_input_feature = self.memory.fake_input_feature
self.states = self.memory.states
self.ground_truth = self.memory.ground_truth
self.progress = self.memory.progress
self.surrogate_loss_addition = 0
with tf.variable_scope('generator'):
fake_output, self.generator_debug_output, self.generator_debugger = cfg.generator(
[self.fake_input, self.z, self.states],
is_train=self.is_train,
progress=self.progress,
cfg=cfg)
self.fake_output, self.new_states, self.surrogate_loss_addition, self.penalty = fake_output
self.fake_output_feature = self.fake_input_feature
self.memory.fake_output_feature = self.fake_output_feature
self.memory.fake_output = self.fake_output
print(cfg.critic)
self.real_logit, self.real_embeddings, self.test_real_gradients = cfg.critic(
images=self.real_data, cfg=cfg, is_train=self.is_training)
self.fake_logit, self.fake_embeddings, self.test_fake_gradients = cfg.critic(
images=self.fake_output, cfg=cfg, reuse=True, is_train=self.is_training)
self.fake_input_logit, self.fake_input_embeddings, _ = cfg.critic(
images=self.fake_input, cfg=cfg, reuse=True, is_train=self.is_training)
print('real_logit', self.real_logit.shape)
with tf.variable_scope('rl_value'):
print('self.states', self.states.shape)
print('self.new_states', self.new_states.shape)
self.old_value, _, _ = cfg.value(
images=self.fake_input,
states=self.states,
cfg=cfg,
reuse=False,
is_train=self.is_training)
self.new_value, _, _ = cfg.value(
images=self.fake_output,
states=self.new_states,
cfg=cfg,
reuse=True,
is_train=self.is_training)
stopped = self.new_states[:, STATE_STOPPED_DIM:STATE_STOPPED_DIM + 1]
clear_final = tf.cast(self.new_states[:, STATE_STEP_DIM:STATE_STEP_DIM + 1]
> self.cfg.maximum_trajectory_length, tf.float32)
print('clear final', clear_final.shape)
print('new_value', self.new_value.shape)
self.new_value = self.new_value * (1.0 - clear_final)
# Reward: the bigger, the better
if cfg.supervised:
self.raw_reward = (cfg.all_reward +
(1 - cfg.all_reward) * stopped) * (-self.fake_logit)
else:
if cfg.gan == 'ls':
self.raw_reward = (cfg.all_reward + (1 - cfg.all_reward) * stopped) * (
1 - (self.fake_logit - 1)**2)
else:
self.raw_reward = (cfg.all_reward + (1 - cfg.all_reward) * stopped) * (
self.fake_logit - tf.stop_gradient(self.fake_input_logit)
) * cfg.critic_logit_multiplier
self.reward = self.raw_reward
if cfg.use_penalty:
self.reward -= self.penalty
print('new_states_slice', self.new_states)
print('new_states_slice',
self.new_states[:, STATE_REWARD_DIM:STATE_REWARD_DIM + 1])
print('fake_logit', self.fake_logit.shape)
self.exp_moving_average = tf.train.ExponentialMovingAverage(
decay=0.99, zero_debias=True)
# TD learning
print('reward', self.reward.shape)
# If it stops, future return should be zero
self.q_value = self.reward + (
1.0 - stopped) * cfg.discount_factor * self.new_value
print('q', self.q_value.shape)
self.advantage = tf.stop_gradient(self.q_value) - self.old_value
self.v_loss = tf.reduce_mean(self.advantage**2, axis=(0, 1))
if cfg.gan == 'ls':
print('** LSGAN')
self.c_loss = tf.reduce_mean(self.fake_logit**2) + tf.reduce_mean(
(self.real_logit - 1)**2)
if cfg.use_TD:
routine_loss = -self.q_value * self.cfg.parameter_lr_mul
advantage = -self.advantage
else:
routine_loss = -self.reward
advantage = -self.reward
print('routine_loss', routine_loss.shape)
print('pg_loss', self.surrogate_loss_addition.shape)
assert len(routine_loss.shape) == len(self.surrogate_loss_addition.shape)
self.g_loss = tf.reduce_mean(routine_loss + self.surrogate_loss_addition *
tf.stop_gradient(advantage))
self.emd = self.c_loss
self.c_average = tf.constant(0, dtype=tf.float32)
else:
print('** WGAN')
self.c_loss = tf.reduce_mean(self.fake_logit - self.real_logit)
if cfg.use_TD:
routine_loss = -self.q_value * self.cfg.parameter_lr_mul
advantage = -self.advantage
else:
routine_loss = -self.reward
advantage = -self.reward
print('routine_loss', routine_loss.shape)
print('pg_loss', self.surrogate_loss_addition.shape)
assert len(routine_loss.shape) == len(self.surrogate_loss_addition.shape)
self.g_loss = tf.reduce_mean(routine_loss + self.surrogate_loss_addition *
tf.stop_gradient(advantage))
self.emd = -self.c_loss
self.c_average = tf.reduce_mean(self.fake_logit + self.real_logit) * 0.5
update_average = self.exp_moving_average.apply([self.c_average])
self.c_average_smoothed = self.exp_moving_average.average(self.c_average)
self.centered_fake_logit = self.fake_logit - self.c_average_smoothed
self.fake_gradients = tf.gradients(self.fake_logit, [
self.fake_output,
])[0]
# Critic gradient norm and penalty
alpha_dist = tf.contrib.distributions.Uniform(low=0., high=1.)
alpha = alpha_dist.sample((cfg.batch_size, 1, 1, 1))
interpolated = self.real_data + alpha * (self.fake_output - self.real_data)
inte_logit, inte_embeddings, _ = cfg.critic(
images=interpolated, cfg=cfg, reuse=True, is_train=self.is_training)
gradients = tf.gradients(inte_logit, [
interpolated,
])[0]
gradient_norm = tf.sqrt(1e-6 + tf.reduce_sum(gradients**2, axis=[1, 2, 3]))
gradient_penalty = cfg.gradient_penalty_lambda * tf.reduce_mean(
tf.maximum(gradient_norm - 1.0, 0.0)**2)
_ = tf.summary.scalar("grad_penalty_loss", gradient_penalty)
self.critic_gradient_norm = tf.reduce_mean(gradient_norm)
_ = tf.summary.scalar("grad_norm", self.critic_gradient_norm)
if cfg.gan == 'w':
if cfg.gradient_penalty_lambda > 0:
print('** Using gradient penalty')
self.c_loss += gradient_penalty
else:
gradient_norm = tf.sqrt(
tf.reduce_sum(self.fake_gradients**2, axis=[1, 2, 3]))
self.critic_gradient_norm = tf.reduce_mean(gradient_norm)
print('** NOT using gradient penalty')
_ = tf.summary.scalar("g_loss", self.g_loss)
_ = tf.summary.scalar("neg_c_loss", -self.c_loss)
_ = tf.summary.scalar("EMD", self.emd)
self.theta_g = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
self.theta_c = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='critic')
self.theta_v = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope='rl_value')
print('# variables')
print(' generator:', len(self.theta_g))
print(' value:', len(self.theta_v))
print(' critic:', len(self.theta_c))
self.lr_g = tf.placeholder(dtype=tf.float32, shape=[], name='lr_g')
self.lr_c = tf.placeholder(dtype=tf.float32, shape=[], name='lr_c')
# Optimizer for Value estimator, use the same lr as g
self.counter_v = tf.Variable(
trainable=False, initial_value=0, dtype=tf.int32)
self.opt_v = ly.optimize_loss(
loss=self.v_loss,
learning_rate=self.cfg.value_lr_mul * self.lr_g,
optimizer=cfg.generator_optimizer,
variables=self.theta_v,
global_step=self.counter_v,
summaries=['gradient_norm'])
# Optimize for Generator (Actor)
self.counter_g = tf.Variable(
trainable=False, initial_value=0, dtype=tf.int32)
self.opt_g = ly.optimize_loss(
loss=self.g_loss,
learning_rate=self.lr_g,
optimizer=cfg.generator_optimizer,
variables=self.theta_g,
global_step=self.counter_g,
summaries=['gradient_norm'])
# Optimize for Discriminator (critic in WGAN or discriminator in LSGAN)
self.counter_c = tf.Variable(
trainable=False, initial_value=0, dtype=tf.int32)
if not self.cfg.supervised:
self.opt_c = ly.optimize_loss(
loss=self.c_loss,
learning_rate=self.lr_c,
optimizer=cfg.critic_optimizer,
variables=self.theta_c,
global_step=self.counter_c,
summaries=['gradient_norm'])
if cfg.gan == 'w' and cfg.gradient_penalty_lambda <= 0:
print(
'** make sure your NN input has mean 0, as biases will also be clamped.'
)
# Merge the clip operations on critic variables
# For WGAN
clipped_var_c = [
tf.assign(var,
tf.clip_by_value(var, -self.cfg.clamp_critic,
self.cfg.clamp_critic))
for var in self.theta_c
]
with tf.control_dependencies([self.opt_c]):
self.opt_c = tf.tuple(clipped_var_c)
with tf.control_dependencies([self.opt_c]):
self.opt_c = tf.group(update_average)
self.saver = tf.train.Saver(
max_to_keep=1) # save all checkpoints max_to_keep=None
self.sess.run(tf.global_variables_initializer())
self.merged_all = tf.summary.merge_all()
self.summary_writer = tf.summary.FileWriter(self.dir, self.sess.graph)
if not restore:
self.fixed_feed_dict_random = self.memory.get_feed_dict(
self.cfg.num_samples)
self.high_res_nets = {}
def get_training_feed_dict_and_states(self, iter):
feed_dict, features = self.memory.get_feed_dict_and_states(
self.cfg.batch_size)
feed_dict[self.lr_g] = self.cfg.lr_g(iter)
feed_dict[self.lr_c] = self.cfg.lr_c(iter)
feed_dict[self.is_train] = 1
return feed_dict, features
def get_replay_feed_dict(self, iter):
feed_dict = self.memory.get_replay_feed_dict(self.cfg.batch_size)
feed_dict[self.lr_c] = self.cfg.lr_c(iter)
feed_dict[self.is_train] = 1
return feed_dict
def train(self):
start_t = time.time()
g_loss_pool = []
v_loss_pool = []
emd_pool = []
# critic gradient (critic logit w.r.t. critic input image) norm
cgn = 0
for iter in range(self.cfg.max_iter_step + 1):
progress = float(iter) / self.cfg.max_iter_step
iter_start_time = time.time()
run_options = tf.RunOptions()
run_metadata = tf.RunMetadata()
if self.cfg.gan == 'w' and (iter < self.cfg.critic_initialization or
iter % 500 == 0):
citers = 100
else:
citers = self.cfg.citers
if iter == 0:
# Make sure there are terminating states
giters = 100
else:
giters = self.cfg.giters
# Update generator actor/critic
for j in range(giters):
feed_dict, features = self.get_training_feed_dict_and_states(iter)
if iter == 0:
feed_dict[self.lr_g] = 0
feed_dict[self.progress] = progress
_, g_loss, v_loss, fake_output, new_states = self.sess.run(
[(self.opt_g, self.opt_v), self.g_loss, self.v_loss,
self.fake_output, self.new_states],
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
if self.cfg.supervised:
ground_truth = feed_dict[self.ground_truth]
else:
ground_truth = None
self.memory.replace_memory(
self.memory.images_and_states_to_records(
fake_output, new_states, features, ground_truth=ground_truth))
v_loss_pool.append(v_loss)
g_loss_pool.append(g_loss)
if iter % self.cfg.summary_freq == 0 and j == 0:
merged = self.sess.run(
self.merged_all,
feed_dict=feed_dict,
options=run_options,
run_metadata=run_metadata)
self.summary_writer.add_summary(merged, iter)
self.summary_writer.add_run_metadata(
run_metadata, 'critic_metadata {}'.format(iter), iter)
merged = []
# Update GAN discriminator ('critic' for WGAN)
for j in range(citers):
feed_dict = self.get_replay_feed_dict(iter)
if not self.cfg.supervised:
# update discriminator only if it is unsupervised
_, emd, cgn = self.sess.run(
[self.opt_c, self.emd, self.critic_gradient_norm],
feed_dict=feed_dict)
emd_pool.append(emd)
if merged:
self.summary_writer.add_summary(merged, iter)
self.summary_writer.add_run_metadata(
run_metadata, 'generator_metadata {}'.format(iter), iter)
# Visualizations
if self.cfg.realtime_vis or iter % self.cfg.write_image_interval == 0:
self.visualize(iter)
v_loss_pool = v_loss_pool[-self.cfg.median_filter_size:]
g_loss_pool = g_loss_pool[-self.cfg.median_filter_size:]
emd_pool = emd_pool[-self.cfg.median_filter_size:]
if (iter + 1) % 500 == 0:
self.saver.save(
self.sess,
os.path.join(self.dir, "model.ckpt"),
global_step=(iter + 1))
if iter % 100 == 0:
eta = (time.time() - start_t) / (iter + 1) / 3600 * (
self.cfg.max_iter_step - iter)
tot_time = (time.time() - start_t) / (iter + 1) / 3600 * (
self.cfg.max_iter_step)
if iter < 500:
eta = tot_time = 0
print('#--------------------------------------------')
print('# Task: %s ela. %.2f min ETA: %.1f/%.1f h' %
(self.cfg.name, (time.time() - start_t) / 60.0, eta, tot_time))
self.memory.debug()
if iter % 10 == 0:
print(
'it%6d,%5.0f ms/it, g_loss=%.2f, v_loss=%.2f, EMD=%.3f, cgn=%.2f' %
(iter, 1000 * (time.time() - iter_start_time),
np.median(g_loss_pool), np.median(v_loss_pool),
np.median(emd_pool), cgn))
def restore(self, ckpt):
self.saver.restore(self.sess, os.path.join(self.dir,
"model.ckpt-%s" % ckpt))
def gradient_processor(self, grads):
if self.cfg.gan == 'ls':
# We show negative grad. (since we are minimizing)
real_grads = []
for g in grads:
if (abs(np.mean(g) - 1)) > 0.001:
real_grads.append(g)
return -grads / np.std(real_grads) * 0.2 + 0.5
else:
return 10 * grads + 0.5
def visualize(self, iter):
progress = float(iter) / self.cfg.max_iter_step
lower_regions = []
pool_images, pool_states, pool_features = self.memory.records_to_images_states_features(
self.memory.image_pool[:self.cfg.num_samples])
if self.cfg.supervised:
gt0 = [x[1] for x in pool_images]
pool_images = [x[0] for x in pool_images]
else:
gt0 = None
lower_regions.append(pool_images)
# Generated data
feed_dict = merge_dict(self.fixed_feed_dict_random, {
self.is_train: self.cfg.test_random_walk,
self.progress: progress
})
eval_images = []
eval_states = []
gt1 = self.fixed_feed_dict_random[self.ground_truth]
for i in range(self.cfg.test_steps):
output_images, output_states = self.sess.run(
[self.fake_output, self.new_states], feed_dict=feed_dict)
feed_dict[self.fake_input] = output_images
feed_dict[self.states] = output_states
eval_images.append(output_images)
eval_states.append(output_states)
best_outputs = []
best_indices = []
for i in range(self.cfg.num_samples):
best_index = self.cfg.test_steps - 1
for j in range(self.cfg.test_steps):
if eval_states[j][i][STATE_REWARD_DIM] > 0:
best_index = j
break
best_image = eval_images[best_index][i]
best_indices.append(best_index + 1)
best_outputs.append(best_image)
lower_regions.append(best_outputs)
# Real data
lower_regions.append(self.fixed_feed_dict_random[self.real_data])
if self.cfg.vis_draw_critic_scores:
lower_regions[0] = self.draw_critic_scores(
lower_regions[0], ground_truth=gt0)
lower_regions[1] = self.draw_critic_scores(
lower_regions[1], ground_truth=gt1)
if not self.cfg.supervised:
lower_regions[2] = self.draw_critic_scores(lower_regions[2])
for img, state in zip(lower_regions[0], pool_states):
cv2.putText(img,
str(state), (4, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.25,
(1.0, 0.0, 0.0))
for img, ind in zip(lower_regions[1], best_indices):
cv2.putText(img,
str(ind), (23, 23), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (1.0, 0.0,
0.0))
lower_regions = list(map(make_image_grid, lower_regions))
seperator = np.ones(
(lower_regions[0].shape[0], 16, lower_regions[0].shape[2]),
dtype=np.float32)
lower_region = np.hstack([
lower_regions[0], seperator, lower_regions[1], seperator,
lower_regions[2]
])
upper_region = np.ones_like(lower_region)
per_row = lower_region.shape[1] // (self.generator_debugger.width + 4)
# The upper part
h, w = self.cfg.source_img_size, self.cfg.source_img_size
images = []
debug_plots = []
gradients = []
rows = lower_region.shape[0] // (h + 2) // 3
groups_per_row = per_row // (self.cfg.test_steps + 1)
per_row = (self.cfg.test_steps + 1) * groups_per_row
gts = []
for j in range(min(self.cfg.num_samples, rows * groups_per_row)):
if self.cfg.supervised:
img_gt = self.memory.get_next_RAW(1, test=self.cfg.vis_step_test)[0][0]
img, gt = img_gt[0], img_gt[1]
else:
img = self.memory.get_next_RAW(1)[0][0]
gt = None
# z is useless at test time...
images_, debug_plots_, gradients_ = self.draw_steps(
img,
ground_truth=gt,
is_train=self.cfg.test_random_walk,
progress=progress)
images += images_
if self.cfg.supervised:
gts += [gt] * len(images_)
gradients_ = [gt] * len(images_)
debug_plots += debug_plots_
gradients += gradients_
if not self.cfg.supervised:
gradients = self.gradient_processor(np.stack(gradients, axis=0))
pad = 0
for i in range(rows):
for j in range(per_row):
start_x, start_y = pad + 3 * i * (h + 2), pad + j * (w + 4)
index = i * per_row + j
if index < len(images):
upper_region[start_x:start_x + h, start_y:start_y + w] = images[index]
upper_region[start_x + h + 1:start_x + h * 2 + 1, start_y:
start_y + w] = gradients[index]
upper_region[start_x + 2 * (h + 1):start_x + h * 3 + 2, start_y:
start_y + w] = debug_plots[index]
seperator = np.ones(
(16, upper_region.shape[1], upper_region.shape[2]), dtype=np.float32)
upper_region = np.vstack([seperator, upper_region, seperator])
img = np.vstack([upper_region, lower_region])
if self.cfg.realtime_vis:
cv2.imshow('vis', img[:, :, ::-1])
cv2.waitKey(20)
if iter % self.cfg.write_image_interval == 0:
fn = os.path.join(self.image_dir, '%06d.png' % iter)
cv2.imwrite(fn, img[:, :, ::-1] * 255.0)
def draw_value_reward_score(self, img, value, reward, score):
img = img.copy()
# Average with 0.5 for semi-transparent background
img[:14] = img[:14] * 0.5 + 0.25
img[50:] = img[50:] * 0.5 + 0.25
if self.cfg.gan == 'ls':
red = -np.tanh(float(score) / 1) * 0.5 + 0.5
else:
red = -np.tanh(float(score) / 10.0) * 0.5 + 0.5
top = '%+.2f %+.2f' % (value, reward)
cv2.putText(img, top, (3, 7), cv2.FONT_HERSHEY_SIMPLEX, 0.25,
(1.0, 1.0 - red, 1.0 - red))
score = '%+.3f' % score
cv2.putText(img, score, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.35,
(1.0, 1.0 - red, 1.0 - red))
return img
def draw_steps(self, img, progress, ground_truth=None, is_train=0):
images = []
debug_plots = []
gradients = []
states = self.memory.get_initial_states(self.cfg.batch_size)
tmp_fake_output = [img] * self.cfg.batch_size
tmp_fake_output = np.stack(tmp_fake_output, axis=0)
initial_value, initial_score = self.sess.run(
[self.new_value[0], self.centered_fake_logit[0]],
feed_dict={
self.fake_output: tmp_fake_output,
self.new_states: states,
self.progress: progress
})
images.append(
self.draw_value_reward_score(img, initial_value, 0, initial_score))
debug_plots.append(img * 0 + 1)
# z is useless at test time...
gradients.append(img * 0 + 1)
for k in range(self.cfg.test_steps):
feed_dict = {
self.fake_input: [img] * self.cfg.batch_size,
self.real_data: [img] * self.cfg.batch_size,
self.z: self.memory.get_noise(self.cfg.batch_size),
self.is_train: is_train,
self.states: states,
self.progress: progress
}
if self.cfg.supervised:
feed_dict[self.ground_truth] = [ground_truth]
feed_dict[self.progress] = progress
debug_info, img, grad, new_state, new_value, score, reward = self.sess.run(
[
self.generator_debug_output, self.fake_output[0],
self.fake_gradients[0], self.new_states, self.new_value[0],
self.centered_fake_logit[0], self.reward[0]
],
feed_dict=feed_dict)
debug_plot = self.generator_debugger(debug_info)
images.append(self.draw_value_reward_score(img, new_value, reward, score))
gradients.append(grad)
debug_plots.append(debug_plot)
states = new_state
if states[0, STATE_STOPPED_DIM] > 0:
break
for k in range(len(images), self.cfg.test_steps + 1):
images.append(img * 0 + 1)
gradients.append(img * 0 + 1)
debug_plots.append(img * 0 + 1)
return images, debug_plots, gradients
def draw_critic_scores(self, images, ground_truth=None):
# We do not care about states here, so that value drawn may not make sense.
images = list(images)
original_len = len(images)
if len(images) < self.cfg.batch_size:
images += [images[0]] * (self.cfg.batch_size - len(images))
states = self.memory.get_initial_states(self.cfg.batch_size)
# indexs = self.memory.get_random_indexs(self.cfg,batch_size)
images = np.stack(images, axis=0)
if self.cfg.supervised:
# TODO
feed_dict = {
self.real_data: images,
self.fake_input: images,
self.ground_truth: ground_truth,
self.new_states: states,
self.states: states,
self.is_train: 0
}
else:
feed_dict = {
self.fake_output: images,
self.real_data: images,
}
if self.cfg.gan == 'ls':
logit = self.fake_logit
else:
logit = self.centered_fake_logit
scores = self.sess.run(logit, feed_dict=feed_dict)
if self.cfg.supervised:
scores = np.sqrt(scores) * 100.0
ret = []
for i in range(len(images)):
img, score = images[i].copy(), scores[i]
# Average with 0.5 for semi-transparent background
img[50:] = img[50:] * 0.5 + 0.25
if self.cfg.gan == 'ls':
red = -np.tanh(float(score) / 1) * 0.5 + 0.5
else:
red = -np.tanh(float(score) / 10.0) * 0.5 + 0.5
score = '%+.3f' % score
cv2.putText(img, score, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.35,
(1.0, 1.0 - red, 1.0 - red))
ret.append(img)
return ret[:original_len]
def backup_scripts(self):
script_dir = os.path.join(self.dir, 'scripts')
try:
os.mkdir(script_dir)
except Exception as e:
pass
for fn in os.listdir('.'):
if fn.endswith('.py'):
shutil.copy(fn, script_dir)
print('Scripts are backed up. Initializing network...')
def get_high_resolution_net(self, res):
if res not in self.high_res_nets:
print('Creating high_res_network for ', res)
net = Dict()
net.high_res_input = tf.placeholder(
tf.float32,
shape=(None, res[0], res[1], self.cfg.real_img_channels),
name='highres_in')
net.fake_input = self.fake_input
net.fake_input_feature = self.fake_input_feature
net.real_data = self.real_data
net.z = self.z
net.is_train = self.is_train
net.states = self.states
with tf.variable_scope('generator', reuse=True):
fake_output, net.generator_debug_output, net.generator_debugger = self.cfg.generator(
[net.fake_input, net.z, net.states],
is_train=net.is_train,
cfg=self.cfg,
high_res=net.high_res_input,
progress=0)
net.fake_output, net.new_states, net.high_res_output = fake_output
net.fake_logit, net.fake_embeddings, _ = self.cfg.critic(
images=net.fake_output, cfg=self.cfg, reuse=True, is_train=False)
self.high_res_nets[res] = net
return self.high_res_nets[res]
def eval(self,
spec_files=None,
output_dir='./outputs',
step_by_step=False,
show_linear=True,
show_input=True):
from util import get_image_center
if output_dir is not None:
try:
os.mkdir(output_dir)
except:
pass
print(spec_files)
# Use a fixed noise
batch_size = 1
for fn in spec_files:
print('Processing input {}'.format(fn))
from util import read_tiff16, linearize_ProPhotoRGB
if fn.endswith('.tif') or fn.endswith('.tiff'):
image = read_tiff16(fn)
high_res_image = linearize_ProPhotoRGB(image)
else:
# TODO: deal with png and jpeg files better - they are probably not RAW.
print(
'Warning: sRGB color space jpg and png images may not work perfectly. See README for details. (image {})'.
format(fn))
image = cv2.imread(fn)[:, :, ::-1]
if image.dtype == np.uint8:
image = image / 255.0
elif image.dtype == np.uint16:
image = image / 65535.0
elif image.dtype != np.float32 and image.dtype != np.float64:
print('image data type {} is not supported. Please email Yuanming Hu.'.format(image.dtype))
high_res_image = np.power(image, 2.2) # Linearize sRGB
high_res_image /= 2 * high_res_image.max() # Mimic RAW exposure
# Uncomment to bypass preprocessing
# high_res_image = image
noises = [
self.memory.get_noise(batch_size) for _ in range(self.cfg.test_steps)
]
fn = fn.split('/')[-1]
def get_dir():
if output_dir is not None:
d = output_dir
else:
d = self.dump_dir
return d
try:
os.mkdir(get_dir())
except:
pass
def show_and_save(x, img):
img = img[:, :, ::-1]
#cv2.imshow(x, img)
cv2.imwrite(os.path.join(get_dir(), fn + '.' + x + '.png'), img * 255.0)
#if os.path.exists(os.path.join(get_dir(), fn + '.retouched.png')):
# print('Skipping', fn)
# continue
high_res_input = high_res_image
low_res_img = cv2.resize(get_image_center(high_res_image), dsize=(64, 64))
res = high_res_input.shape[:2]
net = self.get_high_resolution_net(res)
low_res_img_trajs = [low_res_img]
low_res_images = [low_res_img]
states = self.memory.get_initial_states(batch_size)
high_res_output = high_res_input
masks = []
decisions = []
operations = []
debug_info_list = []
tmp_fake_input = low_res_images * batch_size
tmp_fake_input = np.array(tmp_fake_input)
print(tmp_fake_input.shape)
for i in range(self.cfg.test_steps):
feed_dict = {
net.fake_input: low_res_images * batch_size,
net.z: noises[i],
net.is_train: 0,
net.states: states,
net.high_res_input: [high_res_output] * batch_size
}
new_low_res_images, new_scores, new_states, new_high_res_output, debug_info = self.sess.run(
[
net.fake_output[0], net.fake_logit[0], net.new_states[0],
net.high_res_output[0], net.generator_debug_output
],
feed_dict=feed_dict)
low_res_img_trajs.append(new_low_res_images)
low_res_images = [new_low_res_images]
# print('new_states', new_states.shape)
states = [new_states] * batch_size
debug_info_list.append(debug_info)
debug_plots = self.generator_debugger(debug_info, combined=False)
decisions.append(debug_plots[0])
operations.append(debug_plots[1])
masks.append(debug_plots[2])
high_res_output = new_high_res_output
if states[0][STATE_STOPPED_DIM] > 0:
break
if step_by_step:
show_and_save('intermediate%02d' % i, high_res_output)
linear_high_res = high_res_input
# Max to white, and then gamma correction
high_res_input = (high_res_input / high_res_input.max())**(1 / 2.4)
# Save linear
if show_linear:
show_and_save('linear', linear_high_res)
# Save corrected
if show_input:
show_and_save('input_tone_mapped', high_res_input)
# Save retouched
show_and_save('retouched', high_res_output)
# Steps & debugging information
with open(os.path.join(get_dir(), fn + '_debug.pkl'), 'wb') as f:
pickle.dump(debug_info_list, f)
padding = 4
patch = 64
grid = patch + padding
steps = len(low_res_img_trajs)
fused = np.ones(shape=(grid * 4, grid * steps, 3), dtype=np.float32)
for i in range(len(low_res_img_trajs)):
sx = grid * i
sy = 0
fused[sy:sy + patch, sx:sx + patch] = cv2.resize(
low_res_img_trajs[i],
dsize=(patch, patch),
interpolation=cv2.cv2.INTER_NEAREST)
for i in range(len(low_res_img_trajs) - 1):
sx = grid * i + grid // 2
sy = grid
fused[sy:sy + patch, sx:sx + patch] = cv2.resize(
decisions[i],
dsize=(patch, patch),
interpolation=cv2.cv2.INTER_NEAREST)
sy = grid * 2 - padding // 2
fused[sy:sy + patch, sx:sx + patch] = cv2.resize(
operations[i],
dsize=(patch, patch),
interpolation=cv2.cv2.INTER_NEAREST)
sy = grid * 3 - padding
fused[sy:sy + patch, sx:sx + patch] = cv2.resize(
masks[i], dsize=(patch, patch), interpolation=cv2.cv2.INTER_NEAREST)
# Save steps
show_and_save('steps', fused)