-
Notifications
You must be signed in to change notification settings - Fork 155
/
fivek.py
executable file
·120 lines (98 loc) · 3.59 KB
/
fivek.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import os
import pickle as pickle
import cv2
import random
import time
from data_provider import DataProvider
import multiprocessing.dummy
from util import read_tiff16, read_set
LIMIT = 5000000
image_size = 80
AUGMENTATION_ANGLE = 0
AUGMENTATION_FACTOR = 4
SOURCE_DIR = 'data/fivek_dataset/FiveK_Lightroom_Export_InputDayLight/'
BATCHED_DIR = 'data/fivek_dataset/sup_batched%daug_daylight' % image_size
try:
os.mkdir(BATCHED_DIR)
except:
pass
image_pack_path = os.path.join(BATCHED_DIR, 'image.npy')
def preprocess_RAW_aug():
print("Preprocessing and augmenting the MIT-Adobe FiveK dataset...It may take several minutes...")
time.sleep(5)
image_pack_path = os.path.join(BATCHED_DIR, 'image_raw.npy')
files = sorted(os.listdir(SOURCE_DIR + '/'))[:LIMIT]
data = {}
data['filenames'] = [None for _ in range(len(files))]
augmentation_factor = AUGMENTATION_FACTOR
images = np.empty(
(augmentation_factor * len(files), image_size, image_size, 3),
dtype=np.float32)
p = multiprocessing.dummy.Pool(16)
from util import rotate_and_crop, linearize_ProPhotoRGB
def load(i):
fn = files[i]
data['filenames'][i] = fn
print('%d / %d' % (i, len(files)))
image = read_tiff16(os.path.join(SOURCE_DIR + '/', fn))
image = linearize_ProPhotoRGB(image)
#print(image.dtype)
#print(image.max())
#print(image.mean())
longer_edge = min(image.shape[0], image.shape[1])
# Crop some patches so that non-square images are better covered
for j in range(augmentation_factor):
sx = random.randrange(0, image.shape[0] - longer_edge + 1)
sy = random.randrange(0, image.shape[1] - longer_edge + 1)
new_image = image[sx:sx + longer_edge, sy:sy + longer_edge]
if AUGMENTATION_ANGLE > 0:
angle = random.uniform(-1, 1) * AUGMENTATION_ANGLE
new_image = rotate_and_crop(new_image, angle)
images[i * augmentation_factor + j] = cv2.resize(
new_image,
dsize=(image_size, image_size),
interpolation=cv2.cv2.INTER_AREA)
p.map(load, list(range(len(files))))
print('Data pre-processing finished. Writing....')
pickle.dump(
data, open(os.path.join(BATCHED_DIR, 'meta_raw.pkl'), 'wb'), protocol=-1)
np.save(open(image_pack_path, 'wb'), images)
print()
class FiveKDataProvider(DataProvider):
raw_image_pack = None
@staticmethod
def get_raw_image_pack():
if FiveKDataProvider.raw_image_pack is None:
image_pack_path = os.path.join(BATCHED_DIR, 'image_raw.npy')
raw_data = np.load(image_pack_path)
# for i in range(len(raw_data)):
# raw_data[i] = (raw_data[i] - raw_data[i].min()) / (raw_data[i].max() - raw_data[i].min())
FiveKDataProvider.raw_image_pack = raw_data
return FiveKDataProvider.raw_image_pack
def __init__(self, set_name, raw=True, *args, **kwargs):
fn_list = read_set(set_name)
print(('len', len(fn_list)))
print(('len set', len(set(fn_list))))
if raw:
data = self.get_raw_image_pack()
print(("#image pack", len(data)))
else:
image_pack_path = os.path.join(BATCHED_DIR, 'image_retouched.npy')
data = np.load(image_pack_path)
new_data = []
for i in range(len(data)):
if (i // AUGMENTATION_FACTOR + 1) in fn_list:
new_data.append(data[i])
data = np.stack(new_data)
print(('final #data', len(data)))
super(FiveKDataProvider, self).__init__(data, *args, **kwargs)
def test():
dp = FiveKDataProvider('2k_train')
while True:
d = dp.get_next_batch(64)
cv2.imshow('img', d[0][0, :, :, ::-1])
cv2.waitKey(0)
if __name__ == '__main__':
preprocess_RAW_aug()
#test()