-
Notifications
You must be signed in to change notification settings - Fork 155
/
config_sintel.py
executable file
·191 lines (158 loc) · 6.27 KB
/
config_sintel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from artist import ArtistDataProvider
from fivek import FiveKDataProvider
from folder_data_provider import FolderDataProvider
from critics import critic
from agent import agent_generator
from util import Dict
from filters import *
cfg = Dict()
###########################################################################
###########################################################################
# Here is a list of parameters. Instead of hard coding them in the script, I summarize them here.
# You do not need to modify most of them except the dataset part (see bottom), unless for good reasons.
###########################################################################
###########################################################################
#--------------------------------------------------------------------------
###########################################################################
# Filter Parameters
###########################################################################
cfg.filters = [
ExposureFilter, GammaFilter, ImprovedWhiteBalanceFilter,
SaturationPlusFilter, ToneFilter, ContrastFilter, WNBFilter, ColorFilter
]
# Gamma = 1/x ~ x
cfg.curve_steps = 8
cfg.gamma_range = 3
cfg.exposure_range = 3.5
cfg.wb_range = 1.1
cfg.color_curve_range = (0.90, 1.10)
cfg.lab_curve_range = (0.90, 1.10)
cfg.tone_curve_range = (0.5, 2)
# Masking is DISABLED
cfg.masking = False
cfg.minimum_strength = 0.3
cfg.maximum_sharpness = 1
cfg.clamp = False
###########################################################################
# RL Parameters
###########################################################################
cfg.critic_logit_multiplier = 0.05
cfg.discount_factor = 1.0
# Each time the agent reuse a filter, a penalty is subtracted from the reward. Set to 0 to disable.
cfg.filter_usage_penalty = 1.0
# Use temporal difference error (thereby the value network is used) or directly a single step award (greedy)?
cfg.use_TD = True
# During test, do we use random walk or pick the action with maximized prob.?
cfg.test_random_walk = False
# Replay memory
cfg.replay_memory_size = 128
# Note, a trajectory will be killed either after achieving this value (by chance) or submission
# Thus exploration will leads to kills as well.
cfg.maximum_trajectory_length = 7
cfg.over_length_keep_prob = 0.5
cfg.all_reward = 1.0
# Append input image with states?
cfg.img_include_states = True
# with prob. cfg.exploration, we randomly pick one action during training
cfg.exploration = 0.05
# Action entropy penalization
cfg.exploration_penalty = 0.05
cfg.early_stop_penalty = 1.0
###########################################################################
# CNN Parameters
###########################################################################
cfg.source_img_size = 64
cfg.base_channels = 32
cfg.dropout_keep_prob = 0.5
# G and C use the same feed dict?
cfg.share_feed_dict = True
cfg.shared_feature_extractor = True
cfg.fc1_size = 128
cfg.bnw = False
# number of filters for the first convolutional layers for all networks
# (stochastic/deterministic policy, critic, value)
cfg.feature_extractor_dims = 4096
###########################################################################
# GAN Parameters
###########################################################################
# For WGAN only
cfg.use_penalty = True
# LSGAN or WGAN? (LSGAN is not supported now, so please do not change this)
cfg.gan = 'w'
##################################
# Generator
##################################
cfg.generator = agent_generator
cfg.giters = 1
##################################
# Critic & Value Networks
##################################
cfg.critic = critic
cfg.value = critic
cfg.gradient_penalty_lambda = 10
# max iter step, note the one step indicates that a Citers updates of critic and one update of generator
cfg.citers = 5
cfg.critic_initialization = 10
# the upper bound and lower bound of parameters in critic
# when using gradient penalty, clamping is disabled
cfg.clamp_critic = 0.01
# EMD output filter size
cfg.median_filter_size = 101
# Noise defined here is not actually used
cfg.z_type = 'uniform'
cfg.z_dim_per_filter = 16
cfg.num_state_dim = 3 + len(cfg.filters)
cfg.z_dim = 3 + len(cfg.filters) * cfg.z_dim_per_filter
cfg.test_steps = 5
cfg.real_img_size = 64
cfg.real_img_channels = 1 if cfg.bnw else 3
###########################################################################
# Training
###########################################################################
cfg.supervised = False
cfg.batch_size = 64
multiplier = 2
cfg.max_iter_step = int(10000 * multiplier)
##################################
# Learning Rates
##################################
lr_decay = 0.1
base_lr = 5e-5
segments = 3
generator_lr_mul = 0.3
cfg.parameter_lr_mul = 1
cfg.value_lr_mul = 10
critic_lr_mul = 1
def g_lr_callback(t):
return generator_lr_mul * base_lr * lr_decay**(
1.0 * t * segments / cfg.max_iter_step)
def c_lr_callback(t):
return critic_lr_mul * base_lr * lr_decay**(
1.0 * t * segments / cfg.max_iter_step)
cfg.lr_g = g_lr_callback
cfg.lr_c = c_lr_callback
optimizer = lambda lr: tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5, beta2=0.9)
cfg.generator_optimizer = optimizer
cfg.critic_optimizer = optimizer
cfg.num_samples = 64
cfg.img_channels = 1 if cfg.bnw else 3
cfg.summary_freq = 100
##################################
# Debugging Outputs
##################################
cfg.vis_draw_critic_scores = True
cfg.vis_step_test = False
cfg.realtime_vis = False
cfg.write_image_interval = int(200 * multiplier)
###########################################################################
# Dataset Parameters
###########################################################################
# Note: this is just demonstrating using custom data for training
# and there is no train/test separation! Make sure you set fake_data_provider
# and fake_data_provider_test to be two different parts!
# Input dataset (train)
cfg.fake_data_provider = lambda: FolderDataProvider(folder='models/sintel/inputs', default_batch_size=cfg.batch_size)
# Input dataset (test)
cfg.fake_data_provider_test = lambda: FolderDataProvider(folder='models/sintel/inputs', default_batch_size=cfg.batch_size)
# Target dataset
cfg.real_data_provider = lambda: FolderDataProvider(folder='models/sintel/outputs', default_batch_size=cfg.batch_size)