-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecogniseFace.m
92 lines (81 loc) · 3.57 KB
/
RecogniseFace.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [ P ] = RecogniseFace( I, featureType, classifierName )
% This script is the main starting point for attempting to classify a
% new image
% A matric of Nx3 where the three is [ id, x, y]
% This will get populated each time a face is found in the image I
% provided
P = [];
% Read in the image and convert it to a usable format
Image = imread(I);
I = im2uint8(Image);
% This uses the CascadeObjectDetector wchich in turn uses the
% Viola-Jones algorithm
FaceDetector = vision.CascadeObjectDetector();
% Increase the merge threshold from the default of 4 to avoid false
% positive face detection
FaceDetector.MergeThreshold = 7;
bbox = step(FaceDetector, I);
N = size(bbox, 1);
% Loops through the image I provided, using the bounding box created
% above to find faces
for i=1:N
faceNum = 1;
% Extract the ith face
a = bbox(i, 1);
b = bbox(i, 2);
c = a+bbox(i, 3);
d = b+bbox(i, 4);
F = I(b:d, a:c, :);
% create a directory to store the found face once it has been
% cropped
mkdir found;
filename = strcat('found/' ,num2str(faceNum),'.jpg');
% resize the face to match the dimensions of those used in training
F = imresize(F, [200,200]);
imwrite(F, filename);
% Use the (a,c) and (b, d) coordinates of the bounding box to
% determine the central face region (x and y coordinates)
% of the person detected
x = (a + c)/2;
y = (b + d)/2;
% Call the relevent classifier/model based on which classifier and
% feature type combination is chosen by the user
% This chosen classifer returns what it beleives to be the matching
% ID for the current face
% SVM using Bag of Features
if isequal(classifierName, 'SVM') && isequal(featureType, 'BAG')
load SVMBAGClassifier.mat;
[id, ~] = predict(SVMBagModel, F);
% SVM using History of Gradients Features
elseif isequal(classifierName, 'SVM') && isequal(featureType, 'HOG')
load SVMHOGClassifier.mat;
features = extractHOGFeatures(F);
id = predict(SVMHogModel, features);
id = str2num(id{1});
% Feedforward Neural Network (MLP) using Bag of Features
elseif isequal(classifierName, 'FNN') && isequal(featureType, 'BAG')
load FNNBAGClassifier.mat;
features = encode(bag, F).';
results = net(features);
[~, id] = max(results(:,1));
% Feedforeward Neural Network (MLP) using History of Gradients
% Features
elseif isequal(classifierName, 'FNN') && isequal(featureType, 'HOG')
load FNNHOGClassifier.mat
features = extractHOGFeatures(F);
featuresTranspose = features';
results = net(featuresTranspose);
[~, id] = max(results(:,1));
% If you do not enter a correct combination of classifier and
% feature type, a message will be displayed in the console and P
% will be returned empty
else
disp('Please choose either "BAG" or "HOG" as your feature type, and "SVM" or "FNN" as you classifier');
return
end
% Add the found coordinates for this current face and it's ID to
% the P matrix, storing the values as integers instead of doubles
% floating points
P = [P; int32(id), int32(x), int32(y)];
end
end