-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFNNBAGClassifier.m
67 lines (53 loc) · 2.41 KB
/
FNNBAGClassifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
% Load the faces from the data-images directory
% this productes a variable faceDabatase with a 1x37 imageSet structure
faceDatabase = imageSet('data-images','recursive');
% Split the above datbase into training & test sets
% 80% will be used for training, and 20% for testing
[trainingSet, testingSet] = partition(faceDatabase,[0.8 0.2]);
% Call the function to create and train an FNN Classifier using Bag of
% Features
FNNClassifierWithBagOfFeatures(trainingSet, testingSet);
%% Extract Bag Of Features and train a Feedforward Neural Network with them
function FNNClassifierWithBagOfFeatures( trainingSet, testingSet )
% Generate the bag of visual words
bag = bagOfFeatures(trainingSet);
% Extract the bag of features for training use
[trainingFeatures, trainingLabelsMatrix, ~] = ExtractBAGFeatures(trainingSet, bag);
% Create and train the FNN with 20 hidden neurons
net = feedforwardnet(20, 'trainscg');
net = configure(net, trainingFeatures, trainingLabelsMatrix);
net = train(net, trainingFeatures, trainingLabelsMatrix);
% Extract Bag of features for testing use
[testingFeatures, testinglabelsMatrix, setSize] = ExtractBAGFeatures(testingSet, bag);
% Make predictions for images in the testing set
results = net(testingFeatures);
% loop through the results to determine best matches, while retrieving
% the labels
for i = 1 : setSize
[~, testingLabels(1,i)] = max(results(:,i));
finalTestingLabels(i) = find(testinglabelsMatrix(:,i));
end
% Calculate the accuracy of the model
accuracy = sum(testingLabels == finalTestingLabels) / setSize;
% Uncomment to generate a .mat file
% save FNNBAGClassifier net bag accuracy
end
%% Extract Bag of Features
function [features, labelsMatrix, setSize] = ExtractBAGFeatures(dataSet, bag)
% Extract the Bag of features for the given data set
dataSets = numel(dataSet);
% Number of images, needed only for testing
setSize = sum([dataSet.Count]);
% Create the matrix for the labels
labelsMatrix = zeros(dataSets, setSize);
featureCount = 1;
% Generate histogram of features vector
features = encode(bag, dataSet).';
% determine the labels for images in the given set
for i=1:dataSets
for j=1:dataSet(i).Count
labelsMatrix(i, featureCount) = 1;
featureCount = featureCount + 1;
end
end
end