-
Notifications
You must be signed in to change notification settings - Fork 0
/
lec2.tex
83 lines (71 loc) · 1.96 KB
/
lec2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\subsection{Configurations of DFAs}
% --------------------------------------------------
\begin{definition}[Configurations]
\[
\Conf = Q \times \Sigma^*
\]
\end{definition}
\begin{definition}[Initial Configurations]
The initial configuration of a machine $I_M(w) \in \Conf$
\[
I_M(w) = ( s,w )
\]
\end{definition}
\begin{definition}[Final Configurations]
The final configuration of a machine $H_M(w) \subseteq \Conf$
\[
H_M(w) = \set{ (q,u) \mid q \in Q, u = \varepsilon }
\]
\end{definition}
\begin{definition}[Output]
The output of a machine is a function that returns either ``$\true$'' or ``$\false$.''
\[
O_M \colon H_M \mapsto \set{ \true,\false }
\]
defined as
\[
O_M(q,\varepsilon)
= \begin{cases}
\true, & q \in F \\
\false, & \text{else}
\end{cases}
\]
\end{definition}
\begin{definition}[Transition Relations] %% ?
$R_M \subseteq \Conf$
\[
R_M = \rightarrow_M
= \{
(q, aw) \rightarrow \( \delta(q,a),w\)
\mid q \in Q, a \in \Sigma, w \in \Sigma^*
\}
\]
\end{definition}
\begin{example}[Configurations of machine in \autoref{exa:a_DFA}]
With input ``10010'' write in mathematical language the configurations of machine in
\autoref{exa:a_DFA}:
\begin{align*}
I_M (10010)
= (A, 10010)
\rightarrow (B, 0010)
\rightarrow (C, 010)
\rightarrow (B, 10)
\rightarrow (A, 0)
\rightarrow (A, \varepsilon)
\in H_M
\end{align*}
And thus the output
\[
O_F (A,\varepsilon) = \false
\].
The machine in fact will only accept integers that are \emph{not} multiples of 3.
\end{example}
\begin{definition}[]
\[
f'_n (w) = O_F (C_n)
\]
\end{definition}
% \[
% L(M) = \set{ w \in \Sigma^* \mid f_M(w) = \true }
% L(M_1) \Sigma^*
% \]