-
Notifications
You must be signed in to change notification settings - Fork 0
/
lec11.tex
84 lines (72 loc) · 2.5 KB
/
lec11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
\begin{example}[Application of reductions]
$A$ and $B$ are languages where
\begin{align*}
A = \set{ 0^n 1^n \mid n \ge 0 } \quad \text{and} \quad
B = \set{ 0^n 1 0^n \mid n \ge 0 }
,\end{align*}
Given that $A$ is nonregular, is $B$ regular?
\begin{proof}
Build an FST that translates $A$ to $B$,
\centgraph[4cm]{mp/fst-0}
so
$
A \reducable B
.$
Since $A$ is nonregular,
$B$ is nonregular, too.
\end{proof}
\end{example}
\begin{example}
Which ones of the following statements are true?
\begin{compactenum}
\item If $B$ is regular then $f_M^{-1}(B)$ is regular, \label{itm:B->f-1B}
\item If $A$ is regular then $f_M(A)$ is regular, \label{itm:A->fA}
\item If $A$ is nonregular then $f_M(A)$ is nonregular. \label{itm:notA->notfA}
\end{compactenum}
Statements \ref{itm:B->f-1B} and \ref{itm:A->fA} are true.
Statement \ref{itm:notA->notfA} can be easily proved wrong with FST
\centgraph[3cm]{mp/fst-1}
which translates any string (regular or nonregular) consisted with 0s and 1s to empty
string $\varepsilon$, thus to a regular language $\set{\varepsilon}$.
\end{example}
\section{NFST}
% ==================================================
\begin{definition}[NFST]
A Nondeterministic Finite State Transducer (NFST) is
\[
M = \lst{Q,\Sigma,\Gamma,\delta,s,F}
\]
where
\begin{compactenum}
\item $Q$ is a finite set of states,
\item $\Sigma$ is a finite set of input symbols,
\item $\Gamma$ is a finite set of output symbols,
\item
$
\delta \colon
Q \times \Sigma_\varepsilon \mapsto
\powerset(Q \times \Gamma_\varepsilon)
$
is the transition function,
\item $s \in Q$ is the start state, and
\item $F \subseteq Q$ is a set of final states.
\end{compactenum}
\end{definition}
An NFST outputs a set of strings on an input.
\begin{definition}[Possible Outputs]
The set of possible outputs of $M$ on input $w$
\[
f_M \colon \Sigma^* \mapsto \gamma (\Gamma^*)
\]
is defined as
\[
f_M(w) = \set{ u \in \Gamma^* \mid (q,u) \in \delta^*(s,w), q \in F }
\]
\end{definition}
\begin{theorem}\
\begin{compactitem}
\item If $A \reducableN B$ and $B$ is regular, then $A$ is regular,
\item If $A \reducableN B \reducableN C$ then $A \reducableN C$,
\item If $f = f_M$ then $\exists M' \text{ s.t.\ } f^{-1} = f_{M'}$.
\end{compactitem}
\end{theorem}